화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.6, 914-920, December, 2018
니켈기반 촉매를 사용한 메탄가스-수증기 개질반응의 모사
Kinetic Model of Steam-Methane Reforming Reactions over Ni-Based Catalyst
E-mail:,
초록
본 연구에서는 상용 니켈-알루미나 촉매를 이용한 메탄가스-수증기 개질반응에서의 고유반응속도 상수를 결정하였다. 반응메커니즘을 반영하기 위해 Langmuir-Hinshelwood chemisorption 이론에 기반한 반응속도식을 사용하였고 반응온도(630~750 °C) 및 반응물의 분압(S/C ratio = 2.7~3.5)을 실험변수로 설정하였다. 실험을 통해 얻어진 데이터를 기반으로 효율적인 최적화 알고리즘을 이용하여 최적 고유반응속도상수들을 결정하였다. 최종적으로 제안된 이 수학적 반응 모델은 촉매반응기의 설계 및 운전조건 최적화에 활용 가능하다.
The intrinsic kinetic parameters of steam-methane reforming reactions over commercial nickel-based catalyst were determined. The reaction rate equations were derived from the reaction mechanism-based Langmuir-Hinshelwood chemisorption theory. As the experimental variables for the kinetic study, the reaction temperature ranged from 630 to 750 °C and the steam-to-carbon ratio also varied from 2.7 to 3.5. Based on the experimental data, the efficient optimization algorithm was used to determine the intrinsic kinetic parameters due to the high-dimensional objective function. It is confirmed that the parameter estimation results showed good agreement with the experimental values. Thus, this proposed mathematical reaction model can be used as the basic information to design a catalytic reactor and to optimize operating conditions.
  1. https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement.
  2. Numaguchi T, Kikuchi K, Chem. Eng. Sci., 43, 2295 (1988)
  3. Kim DH, Lee TJ, Korean Chem. Eng. Res., 29(4), 396 (1991)
  4. Sauk JK, Shul YG, Jung DH, Kim CH, Shin DR, Yang JC, Korean Chem. Eng. Res., 37, 21 (1999)
  5. Yoon WL, Park JW, Rhee YW, Han MW, Jeong JH, Park JS, Jung H, Lee HT, Kim CS, Korean Chem. Eng. Res., 41(4), 389 (2003)
  6. Rostrup-Nielsen T, Catal. Today, 106(1-4), 293 (2005)
  7. Hoang DL, Chan SH, Ding OL, Chem. Eng. Sci., 112(1-3), 1 (2005)
  8. Barelli L, Bidini G, Gallorini F, Servili S, Energy, 33(4), 554 (2008)
  9. Oliveira ELG, Grande CA, Rodrigues AE, Can. J. Chem. Eng., 87(6), 945 (2009)
  10. Oliveira ELG, Grande CA, Rodrigues AE, Chem. Eng. Sci., 65(5), 1539 (2010)
  11. Avraam DG, Halkides TI, Liguras DK, Bereketidou OA, Goula MA, Int. J. Hydrog. Energy, 35(18), 9818 (2010)
  12. Park JE, Park JH, Yim SD, Kim CS, Park ED, Korean Chem. Eng. Res., 49(1), 21 (2011)
  13. Maier L, Schadel B, Delgado HK, Tischer S, Deutschmann O, Top. Catal., 54(13-15), 845 (2011)
  14. Baek SM, Kang JH, Lee KJ, Nam JH, Int. J. Hydrog. Energy, 39(17), 9180 (2014)
  15. Won JM, Park GW, Lee JW, Hong SC, Korean Chem. Res., 54(4), 560 (2016)
  16. Abbas SZ, Dupont V, Mahmud T, Int. J. Hydrog. Energy, 42(5), 2889 (2017)
  17. Akers WW, Camp DP, AIChE J., 1(4), 471 (1955)
  18. Ross JRH, Steel MCF, J. Chem. Soc.-Faraday Trans., 69, 10 (1973)
  19. Rostrup-Nielsen JR, J. Catal., 31(2), 173 (1973)
  20. Quach TQP, Rouleau D, J. Appl. Chem. Biotechnol., 25(6), 445 (1975)
  21. Munster P, Grabke HJ, J. Catal., 72(2), 279 (1981)
  22. De Deken JC, Devos EF, Froment GF, Chem. Reaction Eng. Boston., 196(16), 181 (1982)
  23. Xu J, Froment GF, AIChE J., 35(1), 88 (1989)
  24. Ko KD, Lee JK, Park DK, Shin SH, Korean Chem. Res., 12(4), 478 (1995)
  25. Hou KH, Hughes R, Chem. Eng. J., 82(1-3), 311 (2001)
  26. Zeppieri M, Villa PL, Verdone N, Scarsella M, De Filippis P, Appl. Catal. A: Gen., 387(1-2), 147 (2010)
  27. Jakobsen JG, Jakobsen M, Chorkendorff I, Sehested J, Catal. Lett., 140(3-4), 90 (2010)
  28. Pantoleontos G, Kikkinides ES, Georgiadis MC, Int. J. Hydrog. Energy, 37(21), 16346 (2012)
  29. Elnashaie SSEH, Adris AM, Al-Ubaid AS, Soliman MA, Chem. Eng. Sci., 45(2), 491 (1990)
  30. Soliman MA, Adris AM, Al-Ubaid AS, Elnashaie SSEH, J. Chem. Techol. Biotechnol., 55(2), 131 (1992)
  31. Elnashaie SSEH, Adris AM, Soliman MA, Al-Ubaid AS, Can. J. Chem. Eng., 70(4), 786 (1992)
  32. Elnashaie SSEH, Abashar MEE, Chem. Eng. Process., 32(3), 177 (1993)
  33. Ding Y, Alpay E, Chem. Eng. Sci., 55(18), 3929 (2000)
  34. Egea JA, Vries D, Alonso AA, Banga JR, Ind. Eng. Chem. Res., 46(26), 9148 (2007)
  35. Mansoornejad B, Mostoufi N, Jalali-Farahani F, Comput. Chem. Eng., 32, 1447 (2007)
  36. Pacheco M, Sira J, Kopasz J, Appl. Catal. A: Gen., 250(1), 161 (2003)
  37. Michailos S, “Kinetic Modelling and Dynamic Sensitivity Analysis of a Fast Pyrolysis Fluidised Bed Reactor for Bagasse Exploitation,” Biofuels, Available online (2018).