International Journal of Hydrogen Energy, Vol.43, No.32, 15055-15063, 2018
Ruthenium stabilized on transition metal-on-transition metal oxide nanoparticles for naphthalene hydrogenation
The multi-metallic nanocatalysts of ruthenium nanoclusters-on-transition metal/transition metal oxide nanoparticles (TM/TMO NPs) then supported on carbon (Ru/Ni/NiO/C or Ru/Co/Co3O4/C) were designed and synthesized. The Ni/NiO or Co/Co3O4 NPs strongly stabalized the ruthenium nanoclusters by the interfacial interaction among them. These catalysts exhibited high catalytic activity and 100% selectivity to decalin for naphthalene hydrogenation due to the synergy effect of multiple catalytic sites, where naphthalene was absorbed and activated at the TMO sites (NiO or Co3O4), H-2 was activated at the Ru sites and it produced the activated H species, H was transferred to the surface of NiO or Co3O4 by the hydrogen spillover effect of TM (Ni or Co), reacting with the activated naphthalene and forming decalin. The nanostructures and synergetic effect of the Ru/Ni/NiO/C and Ru/Co/Co3O4/C catalysts were revealed by a series of techniques, such as high resolution transmission electron microscope (HRTEM), temperature-programmed reduction (TPR), scanning transmission electron microscopy-energy dispersive X-ray spectros-copy (STEM-EDS) mapping, high-sensitivity low-energy ion scattering (HS-LEIS) and X-ray absorption spectroscopy (XAS). It is promising that the hydrogen storage can proceed at room temperature via catalyzing naphthalene hydrogenation over the Ru/Ni/NiO/C or Ru/Co/Co3O4/C catalyst. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.