화학공학소재연구정보센터
Energy, Vol.159, 11-20, 2018
Exposure of sufficient edge sites on well-crystallized MoSe2 induced by nitrogen doping (Mo-N-x) for Pt: Enhanced co-catalytic activity and methanol tolerance for oxygen reduction
To endow catalyst supports with excellent co-catalytic activity is an effective way to strengthen methanol-tolerance of Pt-based catalysts towards oxygen reduction reaction (ORR). In this study, nitrogen-doped molybdenum selenide/biomass-derived carbon (N-MoSe2/BC) composite as a Pt-support/co-catalyst is prepared via a synchronous synthesis method to enhance methanol tolerance. The porous structure of N-MoSe2/BC with N-doping can improve the exposure of coordinated Mo-Se-x sites along MoSe2 edges and provide the oxygen diffusion channels to promote ORR activity. Pt-N-MoSe2/BC (Pt, 5 wt.%) shows high activity (14.83 mA cm(-2)) and selectivity (4e(-) pathway) towards ORR, promising durability (11.9% decline) and excellent tolerance against methanol-crossover effects, which are superior to those of commercial Pt/C (10 wt.%). With the introduction of pyridinic N, graphitic N and Mo-N-x in MoSe2/BC, more active sites on Pt (111) facets are activated to enhance charge transfer efficiency and ORR activity. Both N-species in BC and exposed edge sites in N-MoSe2 contribute to high methanol-tolerance and co-catalytic activity towards ORR. Therefore, the remarkable ORR activity is originated from the synergistic effects among well-distributed Pt, N-species, and active edge sites of MoSe2. Design of porous (N)-MoSe2/BC provides a promising direction for preparation of co-catalyst/support with strong methanol tolerance and ORR activity. (C) 2018 Elsevier Ltd. All rights reserved.