Journal of Polymer Science Part B: Polymer Physics, Vol.36, No.8, 1349-1359, 1998
Phase separation induced by a chain polymerization : Polysulfone-modified epoxy/anhydride systems
The reaction-induced phase separation in a blend of a commercial polysulfone (PSu) with diepoxide-cyclic anhydride monomers, was studied. The diepoxide was based on diglycidylether of bisphenol A ( DGEBA) and the hardener was methyl tetrahydrophthalic anhydride (MTHPA), used in stoichiometric proportion. Benzyldimethylamine (BDMA) was used as initiator. PSu had no influence on the polymerization kinetics, the gel conversion, and the overall heat of reaction per epoxy equivalent. A kinetic model including initiation, propagation, and termination steps was used to estimate the distribution of linear and branched species in the first stages of the chain-wise copolymerization. This distribution, together with the PSu distribution, were taken into account in a thermodynamic model of the blend. The interaction parameter was fitted from experimental determinations of conversions at the start of phase separation, obtained under different conditions. The thermodynamic model was used to explain the complex morphologies developed in materials containing different PSu concentrations as well as their dynamic mechanical response. The shift in glass transition temperatures was explained by the fractionation of different species during the phase separation process. Phase inversion produced a significant decrease of the elastic modulus in the glassy state and a thermoplastic-like behavior of the material in the rubbery region.
Keywords:MATRIX RESIN NETWORKS;MODIFIED EPOXY-RESIN;ENGINEERING THERMOPLASTICS;CHEMICAL MODIFICATION;MORPHOLOGY;COPOLYMERIZATION