화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.68, 350-354, December, 2018
Investigation of degradation mechanism of phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes through doping concentration dependence of lifetime
E-mail:
Lifetime study of blue phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was carried out to understand the dominant degradation process during electrical operation of the devices. Doping concentration dependence of the phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes was studied, which demonstrated long lifetime at low doping concentration in the phosphorescent devices and at high doping concentration in the thermally activated delayed fluorescent devices. Detailed mechanism study of the two devices described that triplet?triplet annihilation is the main degradation process of phosphorescent organic light-emitting diodes, whereas triplet?polaron annihilation is the key degradation factor of the thermally activated delayed fluorescent devices.
  1. Wen SW, Lee MT, Chen CH, J. Disp. Technol., 1, 90 (2005)
  2. Yeh SJ, Wu MF, Chen CT, Song YH, Chi Y, Ho MH, Hsu SF, Chen CH, Adv. Mater., 17(3), 285 (2005)
  3. Song W, Lee JY, Adv. Opt. Mater., 5, 12 (2017)
  4. Sivasubramaniam V, Brodkorb F, Hanning S, Loebl HP, van Elsbergen V, Boerner H, Scherf U, Kreyenschmidt M, J. Fluor. Chem., 130, 640 (2009)
  5. Udagawa K, Sasabe H, Cai C, Kido J, Adv. Mater., 26(29), 5062 (2014)
  6. Scholz S, Kondakov D, Luessem B, Leo K, Chem. Rev., 115(16), 8449 (2015)
  7. Kondakov DY, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 373 (2015).
  8. Kim B, Park Y, Lee J, Lee JH, Park J, Wang HL, J. Mater. Chem. C, 248 (2014).
  9. Zhang QS, Li B, Huang SP, Nomura H, Tanaka H, Adachi C, Nat. Photon., 8, 326 (2014)
  10. Seo JA, Gong MS, Song W, Lee JY, Chem. Asian J., 11, 868 (2016)
  11. Nakanotani H, Higuchi T, Furukawa T, Masui K, Morimoto K, Numata M, Tanaka H, Sagara Y, Yasuda T, Adachi C, Nat. Commun., 5 (2014)
  12. Song W, Kim T, Lee Y, Lee JY, J. Mater. Chem. C, 5, 3948 (2017)
  13. Baldo MA, Adachi C, Forrest SR, Phys. Rev. B, 62, 10967 (2000)
  14. Giebink NC, D’Andrade BW, Weaver MS, Mackenzie PB, Brown JJ, Thompson ME, Forrest SR, J. Appl. Phys., 103 (2008).
  15. Zhang YF, Lee J, Forrest SR, Nat. Commun., 5, 1 (2014)
  16. Lee J, Chen HF, Batagoda T, Coburn C, Djurovich PI, Thompson ME, Forrest SR, Nat. Mater., 15(1), 92 (2016)
  17. Seo JA, Jeon SK, Lee JY, Org. Electron., 34, 33 (2016)
  18. Kang YJ, Lee JY, Org. Electron., 32, 109 (2016)
  19. Cho YJ, Jeon SK, Lee JY, Adv. Opt. Mater., 4, 688 (2016)
  20. Choi JM, Lee W, Kim KK, Lee JY, Org. Electron., 45, 104 (2017)
  21. Song W, Lee JY, Adv. Opt. Mater., 5 (2017)
  22. Song W, Lee W, Kim K, Lee JY, Org. Electron., 37, 252 (2016)