화학공학소재연구정보센터
Bioresource Technology, Vol.268, 116-120, 2018
Monitoring of neomycin sulfate antibiotic in microbial fuel cells
Indirect detection and quantification of the neomycin sulfate antibiotic was accomplished in microbial fuel cells. Performance of the microbial fuel cells was examined on the basis of the following parameters; voltage generation, power density, current density and coulombic efficiencies. Removal of neomycin sulfate was monitored using LC-MS/MS in parallel with chemical oxygen demand and total carbohydrate removal. While neomycin sulfate was partially degraded, microbial fuel cell performance appeared to be affected and eventually inhibited by neomycin sulfate on a concentration-based fashion. In order to further examine the neomycin sulfate biosensing activity of the microbial fuel cell, a computational chemistry approach was used to obtain the information about the highest occupied molecular orbital-lowest unoccupied molecular orbital energy values of outer electron orbitals, their distribution, and ionization potentials (IPs). The results showed that electroactive bio-film-based MFCs can be used for sensitive detection of neomycin sulfate found in wastewaters.