화학공학소재연구정보센터
Bioresource Technology, Vol.270, 38-45, 2018
Drag reduction and shear-induced cells migration behavior of microalgae slurry in tube flow
To optimize the designing of microalgae slurry pumping system and enhance the efficiency of microalgae products production, the flow characteristics of microalgae slurries (Chlorella pyrenoidosa) in tube flow were for the first time investigated combining experiments and numerical simulation. The drag reduction behavior of microalgae slurry in the fully developed laminar flow regime was studied. In addition, the transition Reynolds number of microalgae slurries from laminar flow to turbulent flow was about 1000-1300, which was similar to the expression of two-phase flow. To provide a further understanding of flow feature of microalgae slurries in tube, a two-phase mixture model was proposed by considering the heterogeneity of concentration due to the shear-induced microalgae cells migration behavior. Simulation results revealed that the heterogeneous distribution of concentration was affected by average velocity and volume fraction of microalgae slurries, significantly affecting the flow resistance and flow stability of microalgae slurry in the tube flow.