Biochemical and Biophysical Research Communications, Vol.505, No.4, 1244-1250, 2018
Arctigenin shows preferential cytotoxicity to acidity-tolerant prostate carcinoma PC-3 cells through ROS-mediated mitochondrial damage and the inhibition of PI3K/Akt/mTOR pathway
Extracellular acidity in the tumor microenvironment contributes to chemoresistance of malignant tumors. The objective of this study was to determine anticancer effects of arctigenin, a novel anti-inflammatory lignan extracted from seeds of Arctium lappa, on acidity-tolerant prostate cancer PC-3AcT cells. The PC-3AcT cells manifested increased tolerance to low-pH media with enhanced percent cell viability and increased resistance to docetaxel compared to their parental PC-3 cells. Arctigenin alone or in combination with docetaxel induced potent cytotoxicity. Preferential sensitization of PC-3AcT cells to arctigenin was accompanied by increased cell fractions with sub-G(0)/G(1) peak and annexin V-PE(+), increased ROS levels, decreased mitochondrial membrane potential and cellular ATP content, and inhibition of PI3K/Akt/mTOR pathway. A series of changes caused by arctigenin were efficiently reversed through reducing ROS levels by radical scavenger N-acetylcysteine, thus placing ROS upstream of arctigenin-driven cytotoxicity. Collectively, these results demonstrate that arctigenin can increase oxidative stress-mediated mitochondrial damage of acidity-tolerant PC-3AcT cells, suggesting that arctigenin might be a potential therapeutic candidate to overcome acidic-microenvironment-associated chemotherapeutic resistance in prostate cancer. (C) 2018 Elsevier Inc. All rights reserved.