화학공학소재연구정보센터
Automatica, Vol.95, 514-524, 2018
Distributed sampled-data control of Kuramoto-Sivashinsky equation
The paper is devoted to distributed sampled-data control of nonlinear PDE system governed by 1-D Kuramoto-Sivashinsky equation. It is assumed that N sensors provide sampled in time spatially distributed (either point or averaged) measurements of the state over N sampling spatial intervals. Locally stabilizing sampled-data controllers are designed that are applied through distributed in space shape functions and zero-order hold devices. Given upper bounds on the sampling intervals in time and in space, sufficient conditions ensuring regional exponential stability of the closed-loop system are established in terms of Linear Matrix Inequalities (LMIs) by using the time-delay approach to sampled-data control and Lyapunov-Krasovskii method. As it happened in the case of diffusion equation, the descriptor method appeared to be an efficient tool for the stability analysis of the sampled-data Kuramoto-Sivashinsky equation. An estimate on the domain of attraction is also given. A numerical example demonstrates the efficiency of the results. (C) 2018 Elsevier Ltd. All rights reserved.