Journal of Polymer Science Part B: Polymer Physics, Vol.34, No.10, 1723-1732, 1996
Distribution of Functional-Groups Grafted Onto an Ethylene-Propylene Copolymer
A theoretical model, based on the binomial (Bernoullian) distribution function, was employed for the prediction of functional group distribution in an ethylene-propylene copolymer randomly grafted by maleic anhydride. Using the experimentally determined graft level and molecular weight distribution function, the fraction of polymer molecules with given number of functional groups was calculated. The result was checked experimentally by a fluorescence method based on the excimer formation of pyrene fluorophores attached to the anhydride pendants. The time-resolved fluorescence from the pyrene-labeled copolymer yielded the fraction of polymer molecules with a single functional group. The fraction of singly labeled molecules was compared to the calculated functional group distribution and a reasonable agreement was found between the two. The distribution of grafted maleic anhydride was found to be apparently random among polymer molecules. The distribution of distances was calculated between randomly attached consecutive functional groups along the polymer backbone also. The result indicated that the distance distribution function (similar to a decaying exponential) is dominated by short distances.