화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.11, 2164-2171, November, 2018
Evaluation of the cavitation effect on liquid fuel atomization by numerical simulation
E-mail:
Heavy duty diesel vehicles deteriorate urban air quality by discharging a large volume of air pollutants such as soot and nitrogen oxides. In this study, a newly introduced auxiliary device a fuel activation device (FAD) to improve the combustion efficiency of internal engines by utilizing the cavitation effect was closely investigated by the fluid flow mechanism via a numerical analysis method. As a result, the FAD contributed to fuel atomization from the injection nozzle at lower inlet pressure by reducing the pressure energy. The improved cavitation effect facilitated fuel atomization, and ultimately reduced pollutant emission due to the decrease in fuel consumption. The axial velocity along the flow channel was increased 8.7 times with the aid of FAD, which improved the primary break-up of bubbles. The FAD cavitation effect produced 1.09-times larger turbulent bubbles under the same pressure and fuel injection amount than without FAD.
  1. Suh HK, Lee CS, Renew. Sust. Energ. Rev., 58, 1601 (2016)
  2. Kim HJ, MA dissertation, Kyung Hee University, Korea (1997).
  3. IARC, Diesel Engine Exhaust Carcinogenic, International Agency of Research on Cancer (2012).
  4. Choi SI, Feng JP, Seo HS, Kim SB, Jo YM, J. Korean Soc. Atmos. Environ., 33(4), 306 (2017)
  5. Lee YS, MA dissertation, Kyung Hee University, Korea (2006).
  6. Park DS, Lee TJ, Lee YI, Jeong WS, Kwon SB, Kim DS, Lee KY, Sci. Total Environ., 575, 97 (2017)
  7. Ghods S, Arizona State University, ProQuest Dissertations Publishing, 3567676 (2013).
  8. He Z, Tao X, Zhong W, Leng X, Wang Q, Zhao P, Int. Commun. Heat Mass Transf., 65, 117 (2015)
  9. Yin B, Yu S, Jia H, Yu J, Int. J. Heat Fluid Flow, 59, 1 (2016)
  10. Payri R, Salvador FJ, Gimeno J, Venegas O, Exp. Therm. Fluid Sci., 44, 235 (2013)
  11. Egerer CP, Stefan H, Steffen JS, Nikolaus AA, Phys. Fluids, 26, 085102 (2014)
  12. Sou A, Bicer B, Tomiyama A, Comput. Fluids, 103, 42 (2014)
  13. Yu SH, Yin BF, Jia HK, Wen S, Li XF, Yu JD, Fuel, 208, 20 (2017)
  14. Apte SV, Gorokhovski M, Moin P, Int. J. Multiph. Flow, 29(9), 1503 (2003)
  15. Yuan W, Sauer J, Schnerr GH, Mec. Ind., 2(5), 383 (2001)
  16. He Z, Yuhang C, Xianyin L, Qian W, Genmiao G, Int. Commun. Heat Mass Transf., 76, 108 (2016)
  17. Park S, Woo S, Kim H, Lee K, Appl. Energy, 176, 209 (2016)
  18. Salvadora FJ, Romero JV, Rosello MD, Jaramillo D, J. Comput. Appl. Mathematics, 291, 94 (2016)
  19. Mohan B, Yang WM, Chou SK, Energy Conv. Manag., 77, 269 (2014)
  20. Ghiji M, Goldsworthy L, Brandner PA, Garaniya V, Hield P, Fuel, 175, 274 (2016)
  21. Sou A, Hosokawa S, Tomiyama A, Int. J. Heat Mass Transf., 50(17-18), 3575 (2007)
  22. Pyszczek R, Kapusta LJ, Teodorczyk A, J. Power Technol., 97(1), 52 (2017)
  23. He Z, Shao Z, Wang Q, Zhong W, Tao X, Exp. Therm. Fluid Sci., 60, 252 (2015)
  24. Lefebvre AH, Taylor Francis, New York (1989).
  25. Baumgarten C, Stegemann J, Marker GP, Proc. of 18th ILASS Europe Conference, Zaragoza, Spain, 15 (2002).
  26. Payri F, Payri R, Salvador FJ, Martinez-Lopez J, Comput. Fluids, 58, 88 (2012)
  27. Bergwerk W, Proc. Institute Mechanical Engineers, 173(25), 655 (1959)
  28. Soteriou C, Andrews R, Smith M, SAE Paper, Paper No. 950080 (1995).
  29. Nurick WH, Trans. ASME, 98(4), 681 (1976)
  30. Payri F, Bermudez V, Payri R, Salvador FJ, Fuel, 83(4-5), 419 (2004)
  31. Hiroyasu H, Arai M, Shimizu M, Proceedings of International Conference on Liquid Atomization and Spray Systems, 91(ICLASS91), 275 (1991).
  32. Qiu T, Song X, Lei Y, Liu X, An X, Lai M, Appl. Therm. Eng., 109, 364 (206)
  33. Zhandi A, Sohrabi S, Shams M, Int. J. Automotive Eng., 5, 940 (2015)
  34. Som S, Aggarwal SK, El-Hannouny EM, Longman DE, J. Eng. Gas Turbines Power, 132(4), 042802 (2010)
  35. Molina S, Salvador FJ, Carreres M, Jaramillo D, Energy Conv. Manag., 79, 114 (2014)
  36. Sun ZY, Li GX, Chen C, Yu YS, Gao GX, Energy Conv. Manag., 89, 843 (2015)
  37. Wang F, He Z, Liu J, Wang Q, Int. J. Automotive Technol., 16(4), 539 (2015)
  38. Gavaises M, Andriotis A, Papoulias D, Theodorakakos A, Phys. Fluids, 21, 052107 (2017)
  39. Feng JP, Choi SI, Seo HS, Jo YM, Korean J. Chem. Eng. (2018), DOI:10.1007/s11814-018-0106-9.