- Previous Article
- Next Article
- Table of Contents
Journal of Polymer Science Part B: Polymer Physics, Vol.34, No.5, 981-997, 1996
Non-Fickian Diffusion in Thin Polymer-Films
Diffusion of penetrants through polymers often does not follow the standard Fickian model. Such anomalous behavior can cause difficulty when designing polymer networks for specific uses. One type of non-Fickian behavior that results is so-called case II diffusion, where Fickian-like fronts initially move like root t with a transition to a non-Fickian concentration profile and front speed for moderate time. A mathematical model is presented that replicates this behavior in thin polymer films, and an analysis is performed that yields relevant dimensionless groups for study. An unusual result is derived : In certain parameter ranges, the concentration profile can change concavity, reflecting Fickian behavior for short times and non-Fickian behavior for moderate times. Asymptotic and numerical results are then obtained to characterize the dependence of such relevant quantities as failure time, front speed, and mass transport on these dimensionless groups. This information can aid in the design of effective polymer protectant films.