Polymer(Korea), Vol.42, No.5, 776-783, September, 2018
다중벽 탄소나노튜브 표면개질 및 고분자 복합체 형태에 따른 열전도 특성 연구
The Study of Multi-walled Carbon Nanotube Surface and Matrix Structure for Thermal Conductive Composite Material
E-mail:,
초록
고방열 복합소재를 위하여 고분자 경화 유무에 따른 두 가지 종류의 표면처리된 탄소나노튜브/알루미나/ETDS (epoxy-terminated dimethylsiloxane)복합체를 제작하였다. 탄소나노튜브는 산처리 후 실란커플링제 및 dodecylamine을 이용하여 표면처리를 진행하였다. 실란커플링제와의 반응 메커니즘은 반응조건에 따라 조절되었다. 탄소나노튜브 표면처리에 따른 열전도도 특성 변화를 70 w% 알루미나/ETDS 복합체를 기반으로 확인하였다. 탄소나노튜브 표면 처리의 효과는 복합소재의 종류에 따라 상이한 경향을 보이는데, 패드 형태의 복합소재에서는 아민기가 말단으로 위치할 때 가장 우수한 열전도도 특성을 보이는 반면 그리스 형태의 복합소재에서는 긴 탄소사슬이 말단에 위치한 구조가 가장 높은 열전도 특성을 보였다. 또한, 실란올기가 말단에 위치할 때 탄소나노튜브의 복합화 가능한 함량이 가장 높아져, 표면처리 방법에 따른 탄소나노튜브의 최대 함량 및 열전도도 차이가 나타나는 것을 확인하였다.
Two kinds of surface-modified MWCNT/Al2O3/ETDS composites, cured pad and uncured grease, were fabricated for high-thermal-conductivity materials application. MWCNTs were modified using aminoproplytriethoxysilane (APTES) and dodecylamine after acid treatment. The reaction mechanism of APTES and the surface structure of MWCNT was controlled using different reaction conditions. The effect of surface modification on the thermal conductivity was confirmed based on a 70 wt% Al2O3/ETDS composite. The thermal conductivity was found to be dependent on the composite type and surface structure of the modified MWCNTs; the amine-terminated MWCNTs showed the highest thermal conductivity among the pad type composites, while long carbon chain-terminated MWCNTs showed outstanding performance among the grease type composites. Moreover, the maximum processable MWCNT content was also influenced by the surface modification; structurally similar silanol groups affected the molecular mobility of the ETDS resin and they had the highest MWCNT content under the same process conditions.
Keywords:multi-walled carbon nanotube;surface modification;thermal conductivity;surface structure;matrix
- Rana K, Singh J, Ahn JH, J. Mater. Chem. C, 2, 2646 (2014)
- Zhang Q, Huang JQ, Qian WZ, Zhang YY, Wei F, Small, 9, 1237 (2013)
- Sharma S, Hussain S, Singh S, Islam SS, Sens. Actuators B-Chem., 194, 213 (2014)
- Li Y, Gao W, Ci L, Wang C, Ajayan PM, Carbon, 48, 1124 (2010)
- Jin SH, Park YB, Yoon KH, Compos. Sci. Technol., 67, 3434 (2007)
- Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR, Carbon, 50, 3 (2012)
- Ma PC, Siddiqui NA, Marom G, Kim JK, Composites Part A, 41, 1345 (2010)
- Park SH, Bandaru PR, Polymer, 51(22), 5071 (2010)
- Abdalla M, Dean D, Robinson P, Nyairo E, Polymer, 49(15), 3310 (2008)
- Kim A, Seong DG, Kang TJ, Youn JR, Carbon, 44, 1898 (2006)
- Ma PC, Siddiqui NA, Marom G, Kim JK, Compos. Pt. A-Appl. Sci. Manuf., 41, 1345 (2010)
- Gu J, Meng X, Tang Y, Li Y, Zhuang Q, Kong J, Compos. Pt. A-Appl. Sci. Manuf., 92, 27 (2017)
- Hong JP, Yoon SW, Hwang T, Oh JS, Hong SC, Lee Y, Nam JD, Thermochim. Acta, 537, 70 (2012)
- Pak SY, Kim HM, Kim SY, Youn JR, Carbon, 50, 4830 (2012)
- Teng CC, Ma CCM, Chiou KC, Lee TM, Composites Part B, 43, 265 (2012)
- Yuen SM, Ma CCM, Chiang CL, Teng CC, J. Nanomater., 2008, 4 (2008)
- Ferreira FV, Francisco W, de Menezes BRC, Cividanes LD, Coutinho AD, Thim GP, Appl. Surf. Sci., 357, 2154 (2015)
- Velan TT, Bilal IM, Bull. Mat. Sci., 23, 425 (2000)
- van Oss CJ, Good RJ, J. Macromol. Sci. Chem., 26, 1183 (1989)
- Fekete E, Pukanszky B, Eur. Polym. J., 41, 727 (2005)
- McClory C, McNally T, Baxendale M, Potschke P, Blau W, Ruether M, Eur. Polym. J., 46, 854 (2010)