Journal of Polymer Science Part B: Polymer Physics, Vol.34, No.5, 947-961, 1996
Disentanglement and Reptation During Dissolution of Rubbery Polymers
The dissolution mechanism of rubbery polymers was analyzed by dividing the penetrant concentration field into three regimes that delineate three distinctly different transport processes. The solvent penetration into the rubbery polymer was assumed to be Fickian. The mode of mobility of the polymer chains was shown to undergo a change at a critical penetrant concentration expressed as a change in the diffusion coefficient of the polymer. It was assumed that beyond the critical penetrant concentration, reptation was the dominant mode of diffusion. Molecular arguments were invoked to derive expressions for the radius of gyration, the plateau modulus, and the reptation time, thus leading to an expression for the reptation diffusivity. The disentanglement rate was defined as the ratio between the radius of gyration of the polymer and the reptation time. Transport in the second penetrant concentration regime was modeled to occur in a diffusion boundary layer adjacent to the polymer-solvent interface, where a Smoluchowski type diffusion equation was obtained. The model equations were numerically solved using a fully implicit finite difference technique. The results of the simulation were analyzed to ascertain the effect of the polymer molecular weight and its diffusivity on the dissolution process. The results show that the dissolution can be either disentanglement or diffusion controlled depending on the polymer molecular weight and the thickness of the diffusion boundary layer.