화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.5, 736-746, September, 2018
가교 결합이 가능한 카다놀 기반 바이오 폴리올을 이용한 바이오 폴리우레탄 필름의 제조 및 특성
Preparation and Characterization of Biopolyurethane Film with a Novel Cross-linkable Biopolyol Based on Cardanol
E-mail:
초록
최근 식물성 오일은 생분해성, 재생 가능성 및 합리적인 가격이라는 특성을 바탕으로 바이오 물질 기반 폴리올의 제조에 많이 이용되고 있다. 이중 캐슈넛 껍질액(CNSL)에서 추출한 카다놀은 반응성 지방족 이중결합 및 다양한 중합체를 위한 새로운 기능성 물질을 제조할 수 있는 페놀 화합물을 포함하는 재생 가능한 자원이다. 수년에 걸쳐 카다놀의 다양한 유도체가 지속적으로 연구되었으며 또한 카다놀 기반의 폴리올은 폴리우레탄의 다양한 응용 분야에서 연구되고 있다. 본 연구에서는 1,4-dibromobutane(DB)을 이용하여 카다놀을 브롬 말단 카다놀로 개질하였고, diethanolamine(DEA)을 이용하여 카다놀 유래 바이오 폴리올을 합성하였다. 카다놀 기반 폴리올의 분자구조는 1H NMR, FTIR 및 GPC로 분석하였다. 합성한 바이오 폴리올을 적용한 바이오 폴리우레탄 필름은 hexamethylene diisocyanate(HDI), dibutyltin dilaurate(DBTDL)를 촉매로 사용하여 제조하였다. 바이오 폴리우레탄 필름은 Escherichia coli(E. coli) 에 대하여 항균성을 보였으며, 긴 알킬 사슬의 이중결합을 곁사슬로 포함하기 때문에 가교도를 조절하여 물성조절이 가능했다. 가교 결합된 바이오 폴리우레탄 필름은 바이오 폴리우레탄 필름에 비해 높은 인장강도 및 열적 안정성을 보여준다. 이 연구의 결과는 카다놀 기반의 바이오 폴리우레탄이 환경친화적이고 다양한 응용분야에 적합한 후보물질이라는 것을 보여준다.
Recently, vegetable oils have been exploited for the production of bio-based polyol due to their biodegradability, renewability and reasonable prices in comparison with petroleum-based polyol. Cardanol derived from cashew nut shell liquid oil (CNSL) is renewable resource having a reactive aliphatic double bond and phenolic compound that could be used in preparation of the novel functional materials for versatile polymers. Over the years, various derivatives of cardanol have been continuously studied and also cardanol-based polyol has been explored in various application fields of polyurethane. In this study, biopolyol derived from cardanol was prepared using 1,4-dibromobutane (DB) for intermediate, followed by chemical modification with diethanolamine (DEA). The molecular structure of cardanol based polyol was analyzed by 1H NMR, FTIR and GPC. Biopolyurethane (BPU) film was prepared with hexamethylene diisocyanate (HDI) using dibutyltin dilaurate (DBTDL) as a catalyst. BPU film showed antibacterial property against Escherichia coli (E. coli). Cross-linked BPU film exhibits higher tensile strength and thermal stability than BPU film. This reveals that cardanol-based BPU is a suitable candidate for various applications as an environment-friendly polymeric material.
  1. Energy Information Administration, World Crude Oil Prices:https://www.eia.gov/petroleum/data.php (accessed November 16, 2017).
  2. United Nations Framework Convention on Climate Change: http://unfccc.int/2860.php (accessed November 16, 2017).
  3. Raquez JM, Nabar Y, Narayan R, Dubois P, Int. Polym. Process., 22(5), 463 (2007)
  4. Saxena R, Adhikari D, Goyal H, Renew. Sust. Energ. Rev., 13, 167 (2009)
  5. Biermann U, Bornscheuer U, Meier MA, Metzger JO, Schafer HJ, Angew. Chem.-Int. Edit., 50, 3854 (2011)
  6. Van A, Chiou K, Ishida H, Polymer, 55(6), 1443 (2014)
  7. Crocker M, Crofcheck C, Energeia, 17, 1 (2006)
  8. de Espinosa LM, Meier MA, Eur. Polym. J., 47, 837 (2011)
  9. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM, Chem. Rev., 110(6), 3552 (2010)
  10. No SY, Renew. Sust. Energ. Rev., 15, 131 (2011)
  11. Pillai C, Des. Monomers Polym., 13, 87 (2010)
  12. Ryu YS, Oh KW, Kim SH, Macromol. Res., 24(10), 874 (2016)
  13. Cherubini F, Energy Conv. Manag., 51(7), 1412 (2010)
  14. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578 (2010)
  15. Sims RE, Mabee W, Saddler JN, Taylor M, Bioresour. Technol., 101, 1570 (210)
  16. Clark JH, J. Chem. Technol. Biotechnol., 82(7), 603 (2007)
  17. da Silva EAB, Zabkova M, Araujo JD, Cateto CA, Barreiro MF, Belgacem MN, Rodriques AE, Chem. Eng. Res. Des., 87(9A), 1276 (2009)
  18. Yao YG, Yoshioka M, Shiraishi N, J. Appl. Polym. Sci., 60(11), 1939 (1996)
  19. Yan YB, Pang H, Yang XX, Zhang RL, Liao B, J. Appl. Polym. Sci., 110(2), 1099 (2008)
  20. Petrovic ZS, Wan X, Bilic O, Zlatanic A, Hong J, Javni I, Ionescu M, Milic J, Degruson D, J. Am. Oil Chem. Soc., 90, 1073 (2013)
  21. Posten C, Schaub G, J. Biotechnol., 142, 64 (2009)
  22. Fenton O, Algal Res., 1, 49 (2012)
  23. Yoon JJ, Kim YJ, Kim SH, Ryu HJ, Choi JY, Kim GS, Shin MK, Adv. Mat. Res., 93, 463 (2010)
  24. Zhang L, Yang Y, Chen Y, Lu H, Eur. Polym. J., 93, 284 (2017)
  25. Balachandran VS, Jadhav SR, Vemula PK, John G, Chem. Soc. Rev., 42, 427 (2013)
  26. Lubi MC, Thachil ET, Des. Monomers Polym., 3, 123 (2000)
  27. Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP, Polym. Chem., 5, 3142 (2014)
  28. Huong NL, Nieu NH, Tan TTM, Griesser UJ, Macromol. Mater. Eng., 243, 77 (1996)
  29. Pillai C, Prasad V, Sudha J, Bera S, Menon A, J. Appl. Polym. Sci., 41, 2487 (1990)
  30. Aggarwal L, Thapliyal P, Karade S, Prog. Org. Coat., 59, 76 (2007)
  31. Peungjitton P, Sangvanich P, Pornpakakul S, Petsom A, Roengsumran S, J. Surfactants Deterg., 12, 85 (2009)
  32. Wang X, Kalali EN, Wang DY, ACS Sustain. Chem. Eng., 3, 3281 (2015)
  33. Greco A, Brunetti D, Renna G, Mele G, Polym. Degrad. Stabil., 95, 2169 (2010)
  34. Mohapatra S, Nando GB, RSC Adv., 4, 15406 (2014)
  35. Himejima M, Kubo I, J. Agric. Food Chem., 39, 418 (1991)
  36. Choi YS, Kim KH, Kim DG, Kim HJ, Cha SH, Lee JC, RSC Adv., 4, 41195 (2014)
  37. Kanehashi S, Masuda R, Yokoyama K, Kanamoto T, Nakashima H, Miyakoshi T, J. Appl. Polym. Sci., 132, 42725 (2015)
  38. Anand R, Nair BP, Cashew Nut Shell Liquid: A Goldfield for Functional Materials, Springer, Berlin, 2017.
  39. Randall D, Lee S, The polyurethanes book, Wiley, Hoboken, 2002.
  40. Pfister DP, Xia Y, Larock RC, Chem. Sus. Chem., 4, 703 (2011)
  41. Glowinska E, Datta J, Ind. Crop. Prod., 60, 123 (2014)
  42. Shen L, Haufe J, Patel MK, Report for EPNOE and European Bioplastics, 243 (2009).
  43. Cheng C, Bai X, Liu S, Huang Q, Tu Y, Wu H, Wang X, J. Polym. Res., 20, 197 (2013)
  44. Santos CI, Barata JF, Faustino MAF, Lodeiro C, Neves MGP, RSC Adv., 3, 19219 (2013)
  45. Chen X, Sun J, Wang J, Cheng W, Tetrahedron Lett., 53, 2684 (2012)
  46. Bai W, Xiao X, Chen Q, Xu Y, Zheng S, Lin J, Prog. Org. Coat., 75, 184 (2012)
  47. Wu CY, Chang CW, Yuan RH, Chiang YC, Chen JT, Kang DY, Chen HY, Nanoscale, 9, 14787 (2017)
  48. Basti H, Tahar LB, Smiri L, Herbst F, Nowak S, Mangeney C, Ammar S, Colloids Surf. A: Physicochem. Eng. Asp., 490, 222 (2016)
  49. Kirpluks M, Cabulis U, Avots A, Insulation Materials in Context of Sustainability, A. Almusaed, Editor, InTech (2016).
  50. Grubisic Z, Rempp P, Benoit H, J. Polym. Sci. B: Polym. Phys., 34(10), 1707 (1996)
  51. Bonchev D, Markel EJ, Dekmezian AH, Polymer, 43(1), 203 (2002)
  52. Dusek K, Spirkova M, Havlicek I, Macromolecules, 23, 1774 (1990)
  53. Lapprand A, Boisson F, Delolme F, Mechin F, Pascault JP, Polym. Degrad. Stabil., 90, 363 (2005)
  54. Wegener G, Brandt M, Duda L, Hofmann J, Klesczewski B, Koch D, Kumpf RJ, Orzesek H, Pirkl HG, Six C, Steinlein C, Weisbeck M, Appl. Catal. A: Gen., 221(1-2), 303 (2001)
  55. Yoon DY, Kim DS, Korean J. Chem. Eng., 26(2), 433 (2009)
  56. Boonsai P, Phuwapraisirisan P, Chanchao C, Int. J. Med. Sci., 11, 327 (2014)
  57. Lopez C, Lima K, Manno MC, Tavares F, Neto DF, Jesus M, Viana M, Arq. Bras. Med. Vet. Zootec., 64, 1027 (2012)
  58. Choi YS, Kang H, Kim DG, Cha SH, Lee JC, ACS Appl. Mater. Interfaces, 6, 21297 (2014)
  59. Lalitha K, Sandeep M, Prasad YS, Sridharan V, Maheswari CU, Srinandan C, Nagarajan S, ACS Sustain. Chem. Eng., 5, 436 (2016)
  60. Nguyen TK, Lam SJ, Ho KK, Kumar N, Qiao GG, Egan S, Boyer C, Wong EH, ACS Infect. Dis., 3, 237 (2017)
  61. Ma HX, Li JJ, Qiu JJ, Liu Y, Liu CM, ACS Sustain. Chem. Eng., 5, 1350 (2016)
  62. Jyothish K, Vemula PK, Jadhav SR, Francesconi LC, John G, Chem. Commun., 36, 5368 (2009)
  63. Kumar P, J. Coat. Technol. Res., 8, 563 (2011)
  64. Rajput SD, Hundiwale DG, Mahulikar PP, Gite VV, Prog. Org. Coat., 77, 1360 (2014)