화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.8, 445-451, August, 2018
Magnetic Properties and Magnetocaloric Effect in Ordered Double Perovskites Sr1.8Pr0.2FeMo1-xWxO6
E-mail:
We report the structural, magnetic and magnetocaloric properties of Sr1.8Pr0.2FeMo1-xWxO6(0.0 ≤ x ≤ 0.4) samples prepared by the conventional solid state reaction method. The X-ray diffraction analysis confirms the formation of the tetragonal double perovskite structure with a I4/mmm space group in all the synthesized samples. The temperature dependent magnetization measurements reveal that all the samples go through a ferromagnetic to paramagnetic phase transition with an increasing temperature. The Arrott plot obtained for each synthesized sample demonstrates the second order nature of the magnetic phase transition. A magnetic entropy change is obtained from the magnetic isotherms. The values of maximum magnetic entropy change and relative cooling power at an applied field of 2.5 T are found to be 0.40 Jkg-1K-1 and 69 Jkg-1 respectively for the Sr1.8Pr0.2FeMoO6 sample. The tunability of magnetization and excellent magnetocaloric features at low applied magnetic field make these materials attractive for use in magnetic refrigeration technology.
  1. Phong PT, Dang NV, Nam PH, Phong LTH, Manh DH, An NM, Lee IJ, J. Alloy. Compd., 683, 67 (2016)
  2. Anwar MS, Ahmed F, Lee SR, Danish R, Koo BH, Jpn. J. Appl. Phys., 52, 10MC12 (2013)
  3. Selmi A, M’nassri R, Cheikhrouhou-Koubaa W, Boudjada NC, Cheikhrouhou A, J. Alloy. Compd., 619, 626 (2014)
  4. Gamzatov AG, Aliev AM, Kaul AR, J. Alloy. Compd., 710, 292 (2017)
  5. Shen BG, Sun JR, Hu FX, Zhang HW, Cheng ZH, Adv. Mater., 21(45), 4545 (2009)
  6. Uthaman B, Raji GR, Thomas S, Suresh KG, Varma MR, J. Appl. Phys., 117, 013910 (2015)
  7. Ovichi M, Elbidweihy H, Torre ED, et al., J. Appl. Phys., 117, 17D107 (2015)
  8. Hussain I, Anwar MS, Kim JW, Chung KC, Koo BH, Ceram. Int., 42, 13098 (2016)
  9. Kobayashi KI, Kimura T, Sawada H, Terakura K, Tokura Y, Nature., 395, 677 (1998)
  10. Philipp JB, Majewski P, Alff L, Erb A, Gross R, Phys. Rev. B, 68, 144431 (2003)
  11. Habib AH, Saleem A, Tomy CV, Bahadur D, J. Appl. Phys., 97, 10A906 (2005)
  12. Saad HEMM, Mater. Chem. Phys., 145(1-2), 36 (2014)
  13. Hussain I, Anwar MS, Khan SN, Kim JW, Chung KC, Koo BH, J. Alloy. Compd., 694, 815 (2017)
  14. Frontera C, Rubi D, Navarro J, Garcia-Mu~noz JL, Fontcuberta J, Phys. Rev. B, 68, 012412 (2003)
  15. Rubi D, Frontera C, Herranz G, Mu~noz JLG, Fontcuberta J, Ritter C, J. Appl. Phys., 95, 7082 (2004)
  16. Azad AK, Eriksson SG, Abdullah K, Riksson A, Tseggai M, J. Solid State Chem., 179, 1303 (2006)
  17. Hemery EK, Williams GVM, Trodahl HJ, Phys. Rev. B, 74, 054423 (2006)
  18. Sarma DD, Mahadevan P, Saha-Dasgupta T, Ray S, Kumar A, Phys. Rev. Lett., 85, 2549 (2000)
  19. Navarro J, Frontera C, Balcells LI, Martinez B, Fontcuberta J, Phys. Rev. B, 64, 092411 (2001)
  20. Zhang Q, Wei T, Huang YH, J. Power Sources, 198, 59 (2012)
  21. Sriti F, Nguyen N, Martin C, Ducouret A, Raveau B, J. Magn. Magn. Mater., 250, 123 (2002)
  22. Azad AK, Eriksson SG, Ivanov SA, Mathieu R, Svedlindh P, Eriksen J, Rundlof H, J. Alloy. Compd., 364, 77 (2004)
  23. Zhang Q, Xu ZF, Sun HB, Zhang X, Wang H, Rao GH, J. Alloy. Compd., 745, 525 (2018)
  24. Bourouina M, Krichene A, Boudjada NC, Khitouni M, Boujelben W, Ceram. Int., 43, 8139 (2017)
  25. Banerjee BK, Phys. Lett., 12, 16 (1964)