화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.65, 272-279, September, 2018
Manipulation of microdroplets at a T-junction: Coalescence and scaling law
E-mail:,
The manipulation of a droplet at a microfluidic T-junction is achieved via adding reagents into the droplet with the same solution. Three types for droplet coalescence at the T-junction were observed: tail coalescence, slipping coalescence and unsteady coalescence behaviors with a new droplet formation. The final droplet size decreased (increased) with increasing the capillary number when the flow rate of the dispersed (continuous) phase was fixed. The final droplet size increased with increasing the capillary number of the added phase. The correlations for predicting the coalesced droplet size for tail and slipping coalescence were proposed.
  1. Grunberger A, Wiechert W, Kohlheyer D, Curr. Opin. Biotechnol., 29, 15 (2014)
  2. Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA, Lab Chip, 17, 1856 (2017)
  3. Yap SK, Wong WK, Ng NXY, Khan SA, Chem. Eng. Sci., 169, 117 (2017)
  4. Tan SH, Nguyen NT, Yobas L, Kang TG, J. Micromech. Microeng., 20, 045004 (2010)
  5. Li Y, Ward KR, Burns MA, Anal. Chem., 89, 3996 (2017)
  6. Du W, Fu TT, Zhang QD, Zhu CY, Ma YG, Li HZ, Chem. Eng. Sci., 153, 255 (2016)
  7. Xi HD, Guo W, Leniart M, Chong ZZ, Tan SH, Lab Chip, 16, 2982 (2016)
  8. Seo YS, Yoon K, Rafailovich M, J. Ind. Eng. Chem., 16(6), 879 (2010)
  9. Yu DM, Zheng MM, Jin TM, Wang JT, Chin. J. Chem. Eng., 24(1), 63 (2016)
  10. Wang XD, Zhu CY, Wu YN, Fu TT, Ma YG, Chem. Eng. Sci., 132, 128 (2015)
  11. Ma R, Fu T, Zhang Q, Zhu C, Ma Y, Li HZ, J. Ind. Eng. Chem., 54, 408 (2017)
  12. Liu Z, Wang X, Cao R, Pang Y, Soft Matter, 12, 5797 (2016)
  13. Tian L, Gao M, Gui L, Micromachines, 8, 39 (2017)
  14. Jin BJ, Kim YW, Lee Y, Yoo JY, J. Micromech. Microeng., 20, 035003 (2010)
  15. Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP, Lab Chip, 6, 174 (2006)
  16. Frenz L, El Harrak A, Pauly M, Begin-Colin S, Griffiths AD, Baret JC, Angew. Chem.-Int. Edit., 47, 6817 (2008)
  17. Shintaku H, Kuwabara T, Kawano S, Suzuki T, Kanno I, Kotera H, Microsyst. Technol., 13, 951 (2006)
  18. Tan YC, Ho YL, Lee AP, Microfluid. Nanofluid, 3, 495 (2006)
  19. Bremond N, Thiam AR, Bibette J, Phys. Rev. Lett., 100, 024501 (2008)
  20. Niu X, Gulati S, Edel JB, deMello AJ, Lab Chip, 8, 1837 (2008)
  21. Xu L, Lee H, Panchapakesan R, Oh KW, Lab Chip, 12, 3936 (2012)
  22. Wang K, Lu YC, Yang L, Luo GS, AIChE J., 59(2), 643 (2013)
  23. Fidalgo LM, Abell C, Huck WT, Lab Chip, 7, 984 (2007)
  24. Liu Y, Ismagilov RF, Langmuir, 25(5), 2854 (2009)
  25. Deng NN, Sun SX, Wang W, Ju XJ, Xie R, Chu LY, Lab Chip, 13, 3653 (2013)
  26. Luong TD, Nguyen NT, Sposito A, Appl. Phys. Lett., 100, 254105 (2012)
  27. Baroud CN, de Saint Vincent MR, Delville JP, Lab Chip, 7, 1029 (2007)
  28. Zagnoni M, Cooper JM, Lab Chip, 9, 2652 (2009)
  29. Zagnoni M, Le Lain G, Cooper JM, Langmuir, 26(18), 14443 (2010)
  30. Hou L, Ren Y, Jia Y, Deng X, Liu W, Feng X, Jiang H, ACS Appl. Mater. Interface, 9, 12282 (2017)
  31. Jia Y, Ren Y, Hou L, Liu W, Deng X, Jiang H, Small, 13 (2017)
  32. Kadivar E, EPL, 106, 24003 (2014)
  33. Ray A, Varma VB, Jayaneel PJ, Sudharsan NM, Wang ZP, Ramanujan RV, Sens. Actuators B-Chem., 242, 760 (2017)
  34. Song H, Chen DL, Ismagilov RF, Angew. Chem.-Int. Edit., 45, 7336 (2006)
  35. Sivasamy J, Chim YC, Wong TN, Nguyen NT, Yobas L, Microfluid. Nanofluid., 8, 409 (2009)
  36. Wang K, Lu Y, Tostado CP, Yang L, Luo G, Chemi. Eng. J., 227, 90 (2013)
  37. Liu K, Qin J, Nanotechnology, 24, 125602 (2013)
  38. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM, Lab Chip, 6, 437 (2006)
  39. Shen F, Li Y, Liu Z, Li X, Microfluid. Nanofluid., 21 (2017)
  40. Wu Y, Fu T, Zhu C, Ma Y, Li HZ, Microfluid. Nanofluid., 16, 275 (2013)
  41. Jin BJ, Yoo JY, Exp. Fluids, 52, 235 (2011)
  42. Christopher GF, Bergstein J, End NB, Poon M, Nguyen C, Anna SL, Lab Chip, 9, 1102 (2009)
  43. Fu TT, Wu YN, Ma YG, Li HZ, Chem. Eng. Sci., 84, 207 (2012)