화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.65, 35-39, September, 2018
Development of solution-processable blue/hybrid-white OLEDs based on thermally activated delayed fluorescence
E-mail:,
In this work, hybrid-WOLEDs are fabricated by employing single emitting layers (S-EMLs), which consist of 5-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-10,10-diphenyl-5,10-dihydrodibenzo[b,e][1,4]azasiline (DTPDDA) as a blue thermally activated delayed fluorescent (TADF) emitter and bis(2-methyldibenzo [f,h]quinoxaline) (acetylacetonate)iridium(III) (Ir(MDQ)2acac) as a phosphorescent red emitter. This architecture employs EMLs of a blue exciplex-forming co-host, which are hole transport type host material was 1,3-bis(N-carbazolyl) benzene (mCP) and the electron transport type host material was diphenylphosphine oxide-4-(triphenylsilyl)phenyl (TSPO1). The resulting hybrid-WOLEDs showed maximum external quantum efficiency (EQE) of 6.16% and current efficiency (CE) of 11.58 cd/A with Commission Internationale de L’Eclairage coordinates of (0.32, 0.33).
  1. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR, Nature, 395(6698), 151 (1998)
  2. Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR, Nature, 440, 908 (2006)
  3. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K, Nature, 45, 234 (2009)
  4. Forrest SR, Bradley DDC, Thompson ME, Adv. Mater., 15(13), 1043 (2003)
  5. Lee TW, Noh T, Shin HW, Kwon O, Park JJ, Choi BK, Kim MS, Shin DW, Kim YR, Adv. Funct. Mater., 19(10), 1625 (2009)
  6. Chiba T, Pu YJ, Kido J, Adv. Mater., 27(32), 4681 (2015)
  7. Lin WC, Lin HW, Lin WC, Mondal E, Wong KT, Org. Electron., 17, 1 (2015)
  8. Huang B, Jiang W, Tang JN, Ban XX, Zhu RG, Xu HG, Yang W, Sun YM, Dyes Pigment., 101, 9 (2014)
  9. Adachi C, Baldo MA, Thompson ME, Forrest SR, J. Appl. Phys., 90, 5048 (2009)
  10. Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR, Nature, 395(6698), 151 (1998)
  11. Lee J, Sung WJ, Joo CW, Cho H, Cho NS, Lee GW, Hwang DH, Lee JI, ETRI J., 38, 260 (2016)
  12. Zhang Q, Li B, Huang S, Nomura H, Tanaka H, Adachi C, Nat. Photonics, 8, 326 (2014)
  13. Sato K, Shizu K, Yoshimura K, Kawada A, Miyazaki H, Adachi C, Phys. Rev. Lett., 110, 247401 (2013)
  14. Godumala M, Choi S, Cho MJ, Choi DH, J. Mater. Chem. C, 4, 11355 (2016)
  15. Sun JW, Baek JY, Kim KH, Moon CK, Lee JH, Kwon SK, Kim YH, Kim JJ, Chem. Mater., 27, 6675 (2015)
  16. Im Y, Lee JY, J. Inf. Disp., 18, 101 (2017)
  17. Albrecht K, Matsuoka K, Yokoyama D, Sakai Y, Nakayama A, Fujita K, Yamamoto K, Chem. Commun., 53, 2439 (2017)
  18. Wada Y, Shizu K, Kubo S, Fukushima T, Miwa T, Tanaka H, Adachi C, Kaji H, Appl. Phys. Express, 9, 032102 (2016)
  19. Chen D, Cai X, Li XL, He Z, Cai C, Chen D, Su SJ, J. Mater. Chem. C, 5, 5223 (2017)
  20. Liu Y, Xie G, Wu K, Luo Z, Zhou T, Zeng X, Yu J, Gong S, Yang C, J. Mater. Chem. C, 4, 4402 (2016)
  21. Shin H, Lee S, Kim KH, Moon CK, Yoo SJ, Lee JH, Kim JJ, Adv. Mater., 26(27), 4730 (2014)
  22. Liu XK, Chen Z, Zheng CJ, Liu CL, Lee CS, Li F, Ou XM, Zhang XH, Adv. Mater., 27(14), 2378 (2015)
  23. Data P, Kurowska A, Pluczyk S, Zassowski P, Pander P, Jedrysiak R, Czwartosz M, Otulakowski L, Suwinski J, Lapkowski M, Monkman AP, J. Phys. Chem. C, 120, 2070 (2016)
  24. Huang M, Jiang B, Xie G, Yang C, J. Phys. Chem. Lett., 8, 4967 (2017)