Applied Chemistry for Engineering, Vol.29, No.4, 446-451, August, 2018
중심합성계획모델을 이용한 밀싹으로부터 플라보노이드성분의 추출공정 최적화
Optimization of Total Flavonoids Extraction Process from Wheat Sprout using Central Composite Design Model
E-mail:
초록
플라보노이드성분 함량이 높은 밀싹을 이용하여 유효성분을 추출하고, 중심합성계획모델을 이용하여 추출공정을 최적화하였다. 중심합성계획모델의 반응치로는 추출수율과 플라보노이드성분 함량을 설정하고, 독립변수인 추출시간, 주정/초순수 부피비, 추출온도에 따른 주효과도와 교호효과도를 해석하였다. 추출수율의 경우 추출시간과 추출온도가 상대적으로 큰 영향을 미쳤으며, 플라보노이드성분 함량의 경우에는 추출시간의 영향이 가장 크게 나타났다. 추출수율과 플라보노이드성분 함량을 모두 고려한 결과 최적추출조건은 추출시간(2.44 h), 주정/초순수의 부피비(50.00 vol%), 추출온도(54.41 ℃)이었으며, 이때 추출수율은 30.14 wt%, 플라보노이드성분 함량은 35.37 μg QE/mL dw이었다. 이 조건의 실제 실험결과 추출수율(29.92 wt%), 플라보노이드성분 함량(35.32 μg QE/mL dw)으로 오차율은 각각 0.39%, 0.74%이었다. 이는 두 개의 반응치를 동시에 분석하는 다중분석 종합분석임에도 높은 정확도를 나타낸 것으로 본 연구에서의 최적화과정 신뢰도가 우수한 것으로 사료된다.
Effective ingredients were extracted using wheat sprout with high levels of flavonoids, and the extraction process was optimized with a central composite design model. The response value of the central composite design model establishes the extraction yield and the content of the flavonoids. The main and interactive effects were then analyzed depending on independent variables such as the extraction time, the volume ratio of alcohol to ultrapure water, and the extraction temperature. The extraction time and temperature were relatively large for the extraction yield. For the total flavonoids, the extraction time was most significantly affected. Considering both the extraction yield and the content of the total flavonoids, optimal extraction conditions were as follows: the extraction time (2.44 h), volume ratio of alcohol to ultrapure water (50.00 vol%), extraction temperature (54.41 ℃). Under these condition, the extraction yield was 30.14 wt% and the content of the total flavonoids was 35.37 μg QE/mL dw. From the actual experimental result, the extraction yield under this condition was 29.92 wt% and the content of the total flavonoids was 35.32 μg QE/mL dw, which had an error rate of 0.39% and 0.74%, respectively. This is a multi-analysis comprehensive analysis that analyzes two simultaneous values of responses, but is considered to be highly accurate and also provides an excellent reliability of the optimization process in this study.
- Clifford AH, Cuppett SL, J. Sci. Food Agric., 80, 1063 (2000)
- Cook NC, Samman S, J. Nutr. Biochem., 7, 66 (1996)
- Ferreres F, Gomes D, Valentano P, Goncalves R, Pio R, Chagas EA, Seabra RM, Andrade PB, Food Chem., 114, 1019 (2009)
- Charanjit K, Kapoor HC, Int. J. Food Sci. Technol., 36, 703 (2001)
- Park MR, Yoo C, Chang YN, Ahn BY, Korean J. Plant Res., 25(4), 379 (2012)
- Im NR, Kim HS, Ha JH, Noh GY, Park SN, Appl. Chem. Eng., 26(4), 470 (2015)
- Park SA, Ha JH, Park SN, Appl. Chem. Eng., 24(2), 177 (2013)
- Jeong HS, Joo H, Lee JH, Appl. Chem. Eng., 24(5), 525 (2013)
- Ebert AW, Chang CH, Yan MR, Yang RY, Food Chem., 237, 15 (2017)
- Gu EJ, Kim DW, Jang GJ, Song SH, Kim HJ, Food Chem., 217, 311 (2017)
- Yavari S, Malakahmad A, Sapari NB, Yavari S, Process Saf. Environ. Protect., 109, 509 (2017)
- D’Archivio AA, Maggi MA, Food Chem., 219, 414 (2017)
- Danmaliki GI, Saleh TA, Shamsuddeen AA, J. Ind. Eng. Chem., 313, 993 (2017)
- Beck S, Stengel J, Phytochemistry, 130, 201 (2016)
- Yang RF, Geng LL, Lu HQ, Fan XD, Hemerocallis citrina baroni, Ultrason. Sonochem., 34, 571 (2017)
- Lee SB, Jang HS, Hong IK, Appl. Chem. Eng., 28(4), 442 (2017)