화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.4, 432-439, August, 2018
오존촉매산화공정에서 금속 담지촉매에 의한 수산화라디칼 생성연구
A Study on the Formation of OH Radical by Metal-supported Catalyst in Ozone-catalytic Oxidation Process
E-mail:
초록
활성탄의 화학적 흡착 및 오존촉매반응의 작용기를 향상시키기 위해 Fe, Co, Mn 및 Pd 금속들을 활성탄에 담지하여 금속촉매 활성탄을 제조하였다. 고급산화공정의 실험결과에서 페놀 분해속도, 용존 오존 분해율 및 TOC (총유기탄소) 제거율은 Pd-AC > Mn-AC > Co-AC > AC > Fe-AC의 순서로 나타났다. BET 분석에서 금속담지활성탄의 물리적 특성은 오존촉매반응에 영향을 미치지 않았으며, 촉매효과는 담지한 금속의 종류에 따라 상이한 결과를 나타내었다. RCT (생성된 OH radical과 오존의 비율) 값 측정은 OH radical과 쉽게 반응하지만 오존과는 매우 느리게 반응하는 probe compound로 알려진 파라-클로로벤조산(p-chlorobenzoic acid)의 분해결과로부터 구할 수 있었으며, 오존단독 공정은 5.48 × 10-9, 활성탄 공정은 1.47 × 10-8로 측정되었고, Fe-AC, Co-AC, Mn-AC 및 Pd-AC 공정은 각각 2.13 × 10-9, 1.51 × 10-8, 4.77 × 10-8 및 5.58 × 10-8로 측정되었다.
Metal catalysts such as Fe, Co, Mn, and Pd supported on the activated carbon (AC) were prepared to improve functional groups for the chemical adsorption and catalytic ozonation. Following ascending orders of the phenol decomposition rate, dissolved ozone decomposition ratio and TOC (total organic carbon) removal from experimental results of advanced oxidation process (AOP) were observed: Fe-AC < AC < Co-AC < Mn-AC < Pd-AC. BET analysis results showed that the physical properties of the metal impregnated activated carbon had no effect on the catalytic ozonation, and the catalytic effect was dependent on the kind of impregnated metal. The ratio of the formed concentration of OH radical to that of ozone (RCT) was measured by using the decomposition outcome of p-chlorobenzoic acid, a probe compound that reacts rapidly with OH radical but slowly with ozone. The measured values of RCT were 5.48 × 10-9 and 1.47 × 10-8 for the ozone alone and activated carbon processes, respectively, and 2.13 × 10-9, 1.51 × 10-8, 4.77 × 10-8, and 5.58 × 10-8 for Fe-AC, Co-AC, Mn-AC, and Pd-AC processes, respectively.
  1. Kasprzyk-Hordern B, Ziolek M, Nawrocki J, Appl. Catal. B: Environ., 46(4), 639 (2003)
  2. Glaze WH, Kang JW, Chapin DH, Ozone Sci. Eng., 9, 335 (1987)
  3. Glaze WH, Kang JW, Ind. Eng. Chem. Res., 28, 1573 (1989)
  4. Park H, Hwang T, Oh H, Kang J, J. Korean Soc. Environ. Eng., 23, 1125 (2001)
  5. Kang T, Oh B, Kwon S, Sohn B, Kang J, Environ. Eng. Res., 27, 663 (2005)
  6. Legube B, Leitner NKV, Catal. Today, 53(1), 61 (1999)
  7. Park J, Suh J, Lee H, J. Environ. Sci., 15, 193 (2006)
  8. Song S, Kang J, J. Korean Soc. Environ. Eng., 26, 588 (2004)
  9. Lee C, Woo J, J. Korean Soc. Environ. Eng., 33, 731 (2011)
  10. Choi JW, Yoon JY, Park JD, Lee HS, Appl. Chem. Eng., 23(3), 302 (2012)
  11. Choi JW, Lee HS, Appl. Chem. Eng., 23(5), 490 (2012)
  12. Buehler RE, Staehelin J, Hoigne J, J. Phys. Chem., 88, 2560 (1984)
  13. Staehelin J, Buehler RE, Hoigne J, J. Phys. Chem., 88, 5999 (1984)
  14. Hoigne J, Bader H, Water Res., 17, 173 (1983)
  15. Hoigne J, Bader H, Water Res., 17, 185 (1983)
  16. Hoigne J, Bader H, Water Res., 19, 993 (1985)
  17. Lundqvist MJ, Eriksson LA, J. Phys. Chem. B, 104(4), 848 (2000)
  18. Elovitz MS, Gunten U, Ozone Sci. Eng., 21, 239 (1999)
  19. Elovitz MS, Gunten U, Ozone Sci. Eng., 22, 123 (2008)
  20. Kwon M, Kye H, Jung Y, Yoon Y, Kang J, Water Res., 122, 172 (2017)
  21. Khuntia S, Majumder SK, Ghosh P, Chem. Eng. Res. Des., 98, 231 (2015)
  22. Shin J, Hidayat ZR, Lee Y, Ozone Sci. Eng., 37, 100 (2015)
  23. Torres RA, Abdelmalek F, Combet E, Petrier C, Pulgarin C, J. Hazard. Mater., 146(3), 546 (2007)
  24. Mezyk SP, Neubauer TJ, Cooper WJ, Peller JR, J. Phys. Chem. A, 111(37), 9019 (2007)
  25. Paillard H, Brunet R, Dore M, Water Res., 22, 91 (1988)
  26. Lee H, Lee H, Lee C, J. Korea Soc. Water Wastewater, 27, 39 (2013)
  27. Jans U, Hoigne J, Ozone-Sci. Eng., 20, 67 (1998)
  28. Ahn Y, Oh H, Yoon Y, Park WK, Yang W, Kang J, J. Environ. Chem. Eng., 5, 3882 (2017)