Journal of Polymer Science Part B: Polymer Physics, Vol.33, No.4, 559-569, 1995
Physical and Chemical Evolution of Pmda-Oda During Thermal Imidization
The processing of poly(imide) films from poly(amic acid) solutions involves the simultaneous loss of solvent and chemical conversion, and may involve structural reorganization such as orientation or crystallization. Here, we describe weight loss, solvent sorption. Fourier transform infrared (FTIR), and wide-angle x-ray scattering (WAXS) studies during thermal imidization of the commercially important poly(imide) PMDA-ODA. The results indicate that imidization proceeds nearly to completion before significant crystallization occurs. The experimental data are interpreted in terms of a triangular phase diagram that makes it possible to plot the processing pathway during the conversion from poly(amic acid) solution to solid poly(imide). In constructing this triangular phase diagram the extent of imidization (i.e., the composition of the poly(amic acid-co-imide) copolymers during conversion) is treated as an independent thermodynamic variable. The form of the triangular phase diagram can be predicted from the Flory-Huggins lattice theory of mixing. There is inevitably a two-phase region present due to the relatively poor solubility of the poly(imide) in the poly(amic acid) solvent (NMP). The specific processing pathway taken depends on the relative amount of solvent loss and imidization during conversion. Further details about the triangular phase diagrams of poly(imides) will require such studies as solvent swelling at intermediate stages of conversion.