화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.33, No.3, 453-465, 1995
Structure and Properties of a Photosensitive Polyimide - Effect of Photosensitive Group
The photosensitive poly(p-phenylene biphenyltetracarboximide) (BPDA-PDA) precursor was synthesized by attaching photocross-linkable 2-(dimethylamino)ethyl methacrylate (DMAEM) monomer to its poly(amic acid) through acid/base complexation. The polyimide thin films were prepared by a conventional cast/softbake/thermal imidization process from the photosensitive precursors with various concentrations of DMAEM. The structure and properties of the polyimide films were investigated by small-angle and wide-angle x-ray scattering, refractive indices and birefringence analysis, residual stress and relaxation analysis, stress-strain analysis, and dynamic mechanical thermal analysis. In comparison with the polyimide film from the poly(amic acid), the films, which were imidized from the photosensitive precursors, exhibited a better molecular order and microstructure; however, they exhibited less molecular orientation in the film plane. Despite the enhancement in both the molecular order and microstructure, the film properties (i.e., mechanical properties, thermal expansion, residual stress, optical properties, dielectric constant, and water sorption) degraded overall due to both the decrease in molecular in-plane orientation and the formation of microvoids caused by the bulky photosensitive group during thermal imidization. That is, on one hand, the PSPI precursor formation provides an advantageous, direct pattern-ability to the BPDA-PDA precursor, and on the other hand, it results in degraded properties to the resulting polyimide film.