Journal of Polymer Science Part B: Polymer Physics, Vol.32, No.6, 1033-1047, 1994
Molecular Modeling of Polymers .10. Characterization of Conformational Transitions of Poly(Acrylic Acid) and Poly(Methacrylic Acid) Using Dyad Structures
The conformational profiles of nearest side-chain neighbors, methylene-dyad structures, of poly(acrylic acid), PAA, and poly(methacrylic acid), PMA, were determined as a function of tacticity, extent of ionization, and presence of counterion. The dominant backbone conformer states are quite similar for both isotactic and syndiotactic diads in a common charge state. Thus, the overall dimensional properties of isotactic syndiotactic and atactic chains of PAA or PMA, based upon dyad interactions, are predicted to be alike for a given charge state. Significant deviations from precise t, g+, and g- states are found for the dyad minimum energy conformations. The rod-to-coil and coil-to-rod transitions observed in PAA and PMA, respectively, as a function of increasing counterion concentration can be explained, to a large extent, by the conformational profiles of the corresponding dyad model structures.