화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.20, 6383-6390, 2018
Tailor-Made Pyrazolide-Based Metal-Organic Frameworks for Selective Catalysis
The predesignable porous structures in metal-organic frameworks (MOFs) render them quite attractive as a host-guest platform to address a variety of important issues at the frontiers of science. In this work, a perfluorophenylene functionalized metalloporphyrinic MOF, namely, PCN-624, has been rationally designed, synthesized, and structurally characterized. PCN-624 is constructed by 12-connected [Ni-8(OH)(4)(H2O)(2)Pz(12)] (Pz = pyrazolide) nodes and fluorinated 5,10,15,20-tetrakis-(2,3,5,6-tetrafluoro-4-(1H-pyrazol-4-yOphenyl)-porphyrin (TTFPPP) linker with an ftw-a topological net. Notably, PCN-624 exhibits extinguished robustness under different conditions, including organic solvents, strong acid, and base aqueous solutions. The pore surface of PCN-624 is decorated with pendant perfluorophenylene groups. These moieties fabricate densely fluorinated nanocages resulting in the selective guest capture of the material. More importantly, PCN-624 can be employed as an efficient heterogeneous catalyst for the selective synthesis of fullerene-anthracene bisadduct. Owing to the high chemical robustness of PCN-624, it can be recycled over five times without significant loss of its catalytic activity. All of these results demonstrate that MOFs can serve as a powerful platform with great flexibility for functional design to solve various synthetic problems.