화학공학소재연구정보센터
Journal of Power Sources, Vol.392, 206-225, 2018
Hybrid electrolytes for lithium metal batteries
This perspective article discusses the most recent developments in the field of hybrid electrolytes, here referred to electrolytes composed of two, well-defined ion-conducting phases, for high energy density lithium metal batteries. The two phases can be both solid, as e.g., two inorganic conductors or one inorganic and one polymer conductor, or, differently, one liquid and one inorganic conductor. In this latter case, they are referred as quasi solid hybrid electrolytes. Techniques for the appropriate characterization of hybrid electrolytes are discussed emphasizing the importance of ionic conduction and interfacial properties. On this view, multilayer systems are also discussed in more detail. Investigations on Lewis acid-base interactions, activation energies for lithium-ion transfer between the phases, and the formation of an interphase between the components are reviewed and analyzed. The application of different hybrid electrolytes in lithium metal cells with various cathode compositions is also discussed. Fabrication methods for the feasibility of large-scale applications are briefly analyzed and different cell designs and configurations, which are most suitable for the integration of hybrid electrolytes, are determined. Finally, the specific energy of cells containing different hybrid electrolytes is estimated to predict possible enhancement in energy with respect to the current lithium-ion battery technology.