화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.354, 125-132, 2018
Unique reversibility in extraction mechanism of U compared to solvent extraction for sorption of U(VI) and Pu(IV) by a novel solvent impregnated resin containing trialkyl phosphine oxide functionalized ionic liquid
Novel Solvent Impregnated Resin (SIR) material was prepared by impregnating a trialkyl phosphine oxide functionalized ionic liquid (IL) into an inert polymeric material XAD-7. A series of SIR materials were prepared by varying the IL quantity. Sorption of both U(VI) and Pu(IV) were found to increase with increasing IL concentration in SIR up to an optimum IL concentration of 435 mg g(-1) of SIR beyond which no effect of IL concentration was observed. A change of mechanism of sorption for U(VI) by SIR was observed in comparison to solvent extraction. The dependency of U(VI) sorption with nitric acid concentration showed a reverse trend compared to solvent extraction studies while for Pu(IV) the trend remained same as observed with solvent extraction. Sorption of both the radionuclides was found to follow pseudo second order mechanism and Langmuir adsorption isotherm. Distribution co-efficient measurements on IL impregnated SIR showed highly selective sorption of U(VI) and Pu(IV) over other trivalent f-elements and fission products from nitric acid medium.