화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.18, 9059-9067, 2018
Experimental study and numerical simulation on the SSCG in FV520B stainless steel exposed to H2S+C1(-) Environment
Constant displacement loading tests using wedge opening loading specimens were carried out in aqueous hydrogen sulfide solution containing sodium chloride to investigate the susceptibility of stress corrosion cracking (SCC) of FV520B precipitation hardening martensitic stainless steel. Results of the SCC tests indicated that the stress corrosion critical stress intensity factor (K-ISCC) dramatically decreased in the corrosion medium investigated and decreased with the increasing of H2S concentration. Microstructures of fracture surfaces were analyzed using a scanning electron microscope (SEM) with an energy dispersive X-ray spectroscopy (EDS). The fracture surface was typical of sulfide stress corrosion fracture. In addition, large amount of intermittent arc-crack on the side surfaces around the tip of main crack formed even no main crack propagated. A sequentially coupling finite element analysis (FEA) program was utilized to simulate the stress field and calculate the diffused hydrogen concentration distribution of specimen exposed to the corrosion medium investigated. The FEA results indicated that corrosion pit affected the stress and diffusion hydrogen distribution around the corrosion pit where large stress gradients formed. Side surface cracks initiated from those corrosion pits and propagated under the synergy of stress and hydrogen. The effect of the corrosion pit on hydrostatic stress distribution was limited in superficial zone near the side surface, thus side surface cracks propagated along the hoop direction rather than along the direction of specimen thickness. Based on the morphology observation and FEA results, it can be concluded that the SCC mechanism of FV520B steel was hydrogen embrittlement mainly and combination of anodic dissolution. Simultaneously, corrosion pitting was the precondition of side surface crack formation while the stress induced hydrogen diffusion was the dominant factor. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.