화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.26, 11884-11895, 2018
Assessment of system variations for hydrogen transport by liquid organic hydrogen carriers
One option to transport hydrogen over longer distances in the future is via Liquid Organic Hydrogen Carriers (LOHC). They can store 6.2 wt% hydrogen by hydrogenation. The most promising LOHCs are toluene and dibenzyltoluene. However, for the dehydrogenation of the LOHCs - to release the hydrogen again - temperatures above 300 degrees C are needed, leading to a high energy demand. Therefore, a Life Cycle Assessment (LCA) and Life Cycle Costing are conducted. Both assessments concentrate on the whole life cycle rather than just direct emissions and investments. In total five different systems are analysed with the major comparison between conventional transport of hydrogen in a liquefied state of matter and LOHCs. Variations include electricity supply for liquefaction, heat supply for dehydrogenation and the actual LOHC compound. The results show that from an economic point of view transport via LOHCs is favourable while from an environmental point of view transport of liquid hydrogen is favourable. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.