International Journal of Hydrogen Energy, Vol.43, No.26, 11676-11687, 2018
Photofermentative hydrogen production from molasses: Scale-up and outdoor operation at low carbon-to-nitrogen ratio
Photofermentative hydrogen production was carried out under outdoor conditions with a Rhodobacter capsulatus strain on molasses, a renewable and sustainable feedstock. An existing photobioreactor design was scaled-up from 9 L to 20 L. The decreased carbon-to nitrogen (C/N) ratio of 13.0, compared to our previous work, accelerated growth and resulted in a reduced lag period for hydrogen production as well as higher productivities in the exponential phase. However, the low C/N ratio also promoted a high optical density due to growth, limiting light transmission. Still, the maximum productivity was found as 0.47 mol H-2/(m(3).h), significantly higher than our result with the smaller reactor volume. High rates of production could not be maintained presumably due to the combined effects of cloudy periods, the aforementioned C/N ratio and decreasing pH. These results suggest that the scale-up was successful and there is potential for further improvement using optimal C/N ratio and cell concentration values. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:Photofermentation;Rhodobacter capsulatus;Molasses;Carbon-to-nitrogen ratio;Scale-up;Outdoor