Inorganic Chemistry, Vol.57, No.9, 5299-5306, 2018
Solvent Effects on Growth, Crystallinity, and Surface Bonding of Ge Nanoparticles
Solvent effects on the microwave-assisted synthesis of germanium nanoparticles are presented. A mixture of oleylamine and 1-dodecene was used as the reaction solvent. Oleylamine serves as a reducing agent in the synthesis while both molecules act as binding ligands. Increased concentrations of 1-dodecene in the solvent mixture were found to increase the size of the formed nanoparticles. Crystallinity was also dependent on the solvent mixture. Amorphous nanoparticles were obtained at lower 1-dodecene concentrations, whereas, at higher concentrations, particles contained crystalline and amorphous domains. 11-Methoxyundec-1-ene was synthesized to replace 1-dodecene in the reaction mixture for nuclear magnetic resonance (NMR) studies. H-1 NMR of the reaction products shows that both solvent molecules in the system act as binding ligands on the nanoparticle surface. Nanoparticles were characterized using powder X-ray diffraction, scanning transmission electron microscopy, and spectroscopy techniques (Raman, UV vis, FT-IR, and NMR).