화학공학소재연구정보센터
Energy Sources Part A-recovery Utilization and Environmental Effects, Vol.40, No.9, 1125-1136, 2018
Intensification of continues biodiesel production process using a simultaneous mixer- separator reactor
Nowadays, Biodiesel as an alternative, sustainable and less toxic fuel has been accepted by both researchers and industry. Developing process intensification reactors with the aim of reaching more efficient process has captured the attention of many researchers recently. In order to examine a novel reactor for biodiesel production using Waste Cooking Oil as a cost-effective feedstock, and KOH as an efficient homogeneous catalyst, the present study was developed to investigate three effective parameters (Oil flow rate, catalyst concentration and reaction temperature) focusing on transesterification reaction yield in the Simultaneous Mixer-Separator (SMS) reactor, designed and fabricated exclusively for biodiesel production at Tarbiat Modares University (TMU). As the findings indicated, rising the flow rate presented an increasing trend up to 15 mL/min and a decreasing trend was found after this level. Also, catalyst concentration up to 1% w/w showed an increasing trend which was significant. Analysis of reaction temperature showed that at 60(degrees)C the maximum yield is obtained. Furthermore, 15 mL/min oil flow rate, 1% w/w KOH concentration and 60(?)C were selected as the optimal reaction conditions for continuous biodiesel production. At this point, the produced biodiesel followed by the purification step reached the yield of 96%. The produced biodiesel physicochemical properties were found to meet ASTM D6751 standard. All in all, continuous production capability, higher productivity, simultaneous separation of products, and the successful handling of waste resources distinguish the SMS reactor as a potential and efficient process intensification reactor.