화학공학소재연구정보센터
Current Applied Physics, Vol.18, No.8, 912-918, 2018
A new simple route to grow Cu(In, Ga)Se-2 thin films with large grains in the co-evaporation process
In the conventional three-stage co-evaporation process to grow Cu(In, Ga)Se-2 (CIGS) film, a large grain is achieved by the co-evaporation of Cu and Se on (In, Ga)(2)Se-3 layer at 550 degrees C in the second stage and then a p-type is achieved by the co-evaporation of In, Ga, and Se in the third-stage. We reported a new process where a CIGS film with a large gain and p-type is achieved by evaporation of Cu only in the second stage at 400 degrees C and by the Se annealing in the third stage. In the new process, thermal budget was lowered and the third-stage co-evaporation process was eliminated. It was found that the CIGS gain size increased when the Cu/(In+Ga) ratio was above 0.7 and an addition thin CIGS layer appeared on the CIGS surface. The reaction path with Cu was described in the Cu-In-Se ternary phase diagram. The cell conversion efficiency increased from 9.6 to 15.4% as the Se annealing temperature increased from 400 to 550 degrees C in the third stage, mainly due to the increase of open-circuit voltage and fill factor. Our process demonstrated a new route to grow a CIGS film with a less thermal budget and simpler process in the co-evaporation process.