Composite Interfaces, Vol.25, No.11, 981-994, 2018
The effect of surface modification on the properties of sisal fiber and improvement of interfacial adhesion in sisal/starch composites induced by starch nanocrystals
A facile approach was utilized to introduce starch nanocrystals (SNCs) onto sisal fiber (SF) to improve the interfacial adhesion between SF and starch. For this, fibers were treated with alkali and then subjected to cold plasma treatment to increase the accessibility with SNCs, which was confirmed through X-ray photoelectron spectroscopy (XPS). It was found that due to the influence of cold plasma treatment, new functional groups were introduced onto SF. The surface characteristics of SF were examined by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The observed results suggested that SNCs were successfully distributed onto SF. Tensile strength and interfacial shear strength of fibers treated under different conditions were calculated and compared through a two-parameter Weibull model. The highest interfacial shear strength of 3.05MPa was obtained by Alkali-300W-SNCs, which indicated an increase of 80.6% than untreated SF. It has also been proved that the starch nanocrystals produced hydrogen bonding and physical interlocking between sisal fiber and starch. Notably, the outcome of this investigation indicates that SNCs may be applied for the fabrication of high performance, environmentally friendly sisal/starch composites for a range of technological applications. [GRAPHICS] .