화학공학소재연구정보센터
Chemical Engineering Journal, Vol.348, 569-582, 2018
Development of an irradiation and kinetic model for UV processes in volatile organic compounds abatement applications
Air pollution from volatile organic compounds (VOCs) is one of the most important environmental hazards. Advanced oxidation processes (AOPs) with UV systems have been showing high potential for the abatement of VOCs. This work is aimed at modeling UV reactors for scaling-up AOPs from lab-scale to full-scale. The proposed model has a novel approach coupling the UV fluence rate to the photo-kinetic mechanism, for a robust understanding of the phenomena involved. The results show that the 185 nm wavelength is deeply absorbed within few centimeters by oxygen, while the 254 nm wavelength is weakly absorbed by the ozone generated in the reactor. Based on the fluence rate calculations, the reactions of ozone generation and depletion were modeled. The ozone net concentration was compared to the experimental results, for model verification. The model accurately predicts the effect of the airflow rate and reactor diameter for the tested cases. The acetaldehyde oxidation reaction was modeled using a simplified kinetic mechanism, using the experimental data of VOC conversion for a further model verification. The suggested reactor models accurately predicted the effect of airflow rate, while exhibiting limitations for the effect of different reactor diameters. Therefore, a computational fluid dynamics (CFD) investigation is needed for an accurate modeling of the VOCs oxidation reaction, implementing the developed analytical expression for reducing the computational workload. By combining the developed model with a CFD simulator, it would be possible to simulate several reactors, also at full-scale, for predicting their performance and identifying optimal configurations.