화학공학소재연구정보센터
Bioresource Technology, Vol.264, 335-342, 2018
Semi-hydrolysis with low enzyme loading leads to highly effective butanol fermentation
To improve butanol fermentation efficiencies, semi-hydrolysate with low enzyme loading using H2SO4 pretreated rice straw was designed, which preferably produced cellobiose with xylose (instead of glucose). Fermentation of semi-hydrolysates avoided carbon catabolite repression (CCR) and produced higher butanol yield to enzyme loading (0.0290 g U-1), a newly proposed parameter, than the conventional glucose-oriented hydrolysate (0.00197 g U-1). Further, overall butanol productivity was improved from 0.0628 g L-1 h(-1) to 0.265 gL(-1) h(-1) during fermentation of undetoxified semi-hydrolysate by using high cell density. A novel simultaneously repeated hydrolysis and fermentation (SRHF) was constructed by recycling of enzymes and cells, which further improved butanol yield to enzyme loading by 183% and overall butanol productivity by 6.04%. Thus, semi-hydrolysate with SRHF is a smartly designed biomass for efficient butanol fermentation of fignocellulosic materials.