화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.499, No.4, 735-742, 2018
Conditional reprogrammed human limbal epithelial cells represent a novel in vitro cell model for drug responses
In this study, we established human limbal epithelial cells (LECs) from normal limbal tissues by using Conditional Reprogramming (CR) technology (refer to CR-LEC cells in this study). We have successfully established CR-LEC cell strains from three human donors (3 out of 3), and normal rabbits (2 out of 2) and pig (1 out of 1) as well. CR-LEC cells sustained a continuous and stable proliferation status with a normal karyotype, normal response to DNA damage, well-defined structured spheres in matrigel 3D culture. Responses of CR-LEC cells to IFN alpha 2b, Ganciclovir and 5-Fluorouracil were different, suggesting that these drugs had different toxicities to these cells as expected. More important, there was no significant difference of responses to drugs between early and late passages of CR-LEC cells (p>0.05), indicating CR-LEC cells can serve a stable normal human cell model for toxicity assessment. Toxicity tests with monolayer cultures of CR-LEC cells were measured by staining the F-actin and Dsg-1 expression. Toxicity of three drugs at LD50 concentration resulted in a gradually increased destruction of monolayer, which is, in accordance with the irritation grade of three drugs on human cornea epithelium. Therefore, CR-LEC cells provide a novel and reliable in vitro physiological cell model for corneal toxicity assessment. (C) 2018 Elsevier Inc. All rights reserved.