화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.4, 701-707, July, 2018
동시 공-증발 기상중합을 이용한 PPy-PAN 전도성 복합 박막제조
Novel Preparation Route of Conductive PPy-PAN Hybrid Thin Films Using Simultaneous Co-vaporized Vapor Phase Polymerization
E-mail:
초록
본 연구에서 서로 다른 중합 메커니즘을 가진 두 개의 단량체(즉, 산화 커플링 중합과 라디칼 중합)를 동시에 공-증발 기상 중합(SC-VPP) 수행하여 유기-유기 전도성 복합 박막을 제조하는 새로운 접근법을 보고한다. SC-VPP 공정을 통해 폴리피롤(PPy)과 폴리아크릴로니트릴(PAN)로 구성된 PPy-PAN 복합 박막을 제조하였다. 두 종류의 유기-유기 전도성 복합 박막의 제조는 FTIR 및 1H NMR 분석을 통해 확인되었다. PPy-PAN 박막은 입자 크기가 작고 PPy 박막보다 상대적으로 매끄러운 표면을 가졌다. PPy-PAN은 부드러운 표면 형태로 인해 PPy와 유사한 전기 전도성을 보였다. PPy-PAN의 접촉각은 30° 이하로 표면 특성을 친수성으로 조절하였다. 본 고에서 제안된 SCVPP 기반 전도성 하이브리드 박막 소재의 개질 기술로 다양한 디바이스 계면에서의 특성을 조절가능하리라 기대한다.
A new approach for the fabrication of organic-organic conducting composite thin films using simultaneous covaporization vapor phase polymerization (SC-VPP) of two monomers that have different polymerization mechanisms (i.e., oxidation-coupling polymerization and radical polymerization) has been reported for the first time. In this study, a PPy-PAN composite thin film consisting of polypyrrole (PPy) and polyacrylonitrile (PAN) were prepared by the SC-VPP process. The preparation of the two types of organic-organic conductive composite thin films was confirmed through FTIR and 1H NMR analysis. The PPy-PAN thin film had a smaller grain size and relatively smoother surface than the PPy thin film. PPy-PAN showed similar electrical conductivity to PPy due to its smooth surface morphology. The contact angle of PPy-PAN was below 30°, which means the surface property was changed to hydrophilic character. The proposed SC-VPP-based hybrid materials allow for control of the surface properties, such as hydrophilicity, of the resulting thin films.
  1. Chiang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
  2. Irimia-Vladu M, Chem. Soc. Rev., 43, 588 (2014)
  3. Gerard M, Chaubey A, Malhotra BD, Biosens. Bioelectron., 17, 345 (2002)
  4. Guimard NK, Gomez N, Schmidt CE, Prog. Polym. Sci, 32, 876 (2007)
  5. Levermore PA, Chen L, Wang X, Das R, Bradley DC, Adv. Mater., 19, 2385 (2007)
  6. Welsh DM, Kumar A, Meijer EW, Reynolds JR, Adv. Mater., 16, 1379 (1999)
  7. Lee KS, Yun JH, Han YH, Yim JH, Park NG, Cho KY, Park JH, J. Mater. Chem., 21, 15193 (2011)
  8. D’Arcy JM, El-Kady MF, Khine PP, Zhang L, Lee SH, et al., ACS NANO, 8, 1500
  9. Ahn J, Yoon JS, Jung SG, Yim JH, Cho KY, J. Mater. Chem. A, 5, 21214 (2017)
  10. Nardes AM, Kemerink M, Kok MMD, Vinken E, Maturova K, Janssen RAJ, Org. Electron., 9, 727 (2008)
  11. Somboonsub B, Invernale MA, Thongyai S, Praserthdam P, Scola DA, Sotzing GA, Polymer, 51(6), 1231 (2010)
  12. Wei Y, Yeh JM, Jin D, Jia X, Wang J, Jang GW, Chen C, Gumbs RW, Chem. Mater., 7, 969 (1995)
  13. Zeng X, Zhou T, Leng C, Zang Z, Wang M, Hu W, Tang X, Lu S, Fang L, Zhou M, J. Mater. Chem. A, 5, 1749 (2017)
  14. Ko YS, Yim JH, Polymer, 93, 167 (2016)
  15. Kim JY, Kwon MH, Min YK, Kwon S, Ihm DW, Adv. Mater., 19(21), 3501 (2007)
  16. Mohammadi A, Hasan M, Liedberg B, Lundstrom I, Salaneck W, Syn. Met., 14, 189 (1986)
  17. Kim J, Kim E, Won Y, Lee H, Suh K, Syn. Met., 139, 485 (2003)
  18. Winther-Jensen B, Breiby DW, West K, Syn. Met., 152, 1 (2005)
  19. Lock JP, Im SG, Gleason KK, Macromolecules, 39(16), 5326 (2006)
  20. Fabretto M, Muller M, Hall C, Murphy P, Short RD, Griesser HJ, Polymer, 51(8), 1737 (2010)
  21. Fernandez FDM, Ko YS, Yim JH, Polym. Korea, 42(3), 513 (2018)
  22. Choi JS, Cho KY, Yim JH, Eur. Polym. J., 46, 389 (2010)
  23. Han YH, Yim JH, Polym. Korea, 34(5), 450 (2010)
  24. Jang J, Lim B, Angew. Chem.-Int. Edit., 115, 5758 (2003)
  25. Choi M, Lim B, Jang J, Macromol. Res., 16(3), 200 (2008)
  26. Tenhaeff WE, Gleason KK, Adv. Funct. Mater., 18(7), 979 (2008)
  27. Asatekin A, Barr MC, Baxamura SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK, Materials Today, 13, 26 (2010)
  28. Tenhaeff WE, Gleason KK, Sur. Coat. Tech., 201, 9417 (2007)
  29. Chan K, Gleason KK, Chem. Vap. Dep., 11, 437 (2005)
  30. Lawal AT, Wallace GG, Talanta, 119, 133 (2014)
  31. Han YH, T-Sejdic J, Wright B, Yim JH, Macromol. Chem. Phys., 212, 521 (2011)
  32. Yim JH, Compos. Sci. Technol., 86, 45 (2013)
  33. Khadka R, Yim JH, Macromol. Res., 23(6), 559 (2015)
  34. Ko YS, Yim JH, Polymer, 93, 167 (2016)
  35. Kim SW, Lee SW, Kim J, Yim JH, Cho KY, Polymer, 102, 127 (2016)
  36. Choi JS, Park JS, Kim B, Lee BT, Yim JH, Polymer, 120, 95 (2017)
  37. Ahn J, Yoon S, Jung SG, Yim JH, Cho KY, J. Mater. Chem. A, 5, 21214 (2017)
  38. Jung SG, Cho KY, Yim JH, J. Ind. Eng. Chem., 63, 95 (2018)
  39. Winther-Jensen B, West K, Macromolecules, 37(12), 4538 (2004)
  40. Kim DO, Lee PC, Kang SJ, Jang K, Lee JH, Cho MH, Nam JD, Thin Solid Films, 517(14), 4156 (2009)
  41. Jang KS, Kim DO, Lee JH, Hong SC, Lee TW, Lee Y, Nam JD, Org. Electron., 11, 1668 (2010)
  42. Vishnuvardgan TK, Kulkarni VR, Basavaraja C, Raghavendra SC, Bull. Mater. Sci., 29, 77 (2006)
  43. Li X, Hao X, Yu H, Na H, Mater. Lett., 62, 1155 (2008)
  44. Enzel P, Bein T, Chem. Mater., 4, 819 (1992)
  45. Ha YH, Nikolov N, Pollack SK, Mastrangelo J, Martin BD, Shashidhar R, Adv. Funct. Mater., 14(6), 615 (2004)
  46. de Leeuw DM, Kraakman PA, Bongaerts PFG, Mutsaers CMJ, Klaassen DBM, Syn. Met., 66, 263 (1994)