화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.6, 365-369, June, 2018
Pt 기반 이원계 나노입자의 산소 및 일산화탄소 흡착 특성에 대한 전자밀도함수이론 연구
Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles
We perform density functional theory calculations to study the CO and O2 adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and O2, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and O2 binding energy values, which are required for facile CO oxidation. On the other hand, the O2 binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than O2. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Ptbased CO-tolerant CO oxidation catalyst.
  1. Yu WT, Porosoff MD, Chen JGG, Chem. Rev., 112(11), 5780 (2012)
  2. Wang JH, Chen H, Hu ZC, Yao MF, Li YD, Catal. Rev.-Sci. Eng., 57(1), 79 (2015)
  3. Greeley J, Mavrikakis M, Nat. Mater., 3(11), 810 (2004)
  4. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH, Nat. Chem., 1, 37 (2009)
  5. Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA, Nat. Mater., 8, 126 (2008)
  6. Huang XQ, Zhao ZP, Cao L, Chen Y, Zhu EB, Lin ZY, Li MF, Yan AM, Zettl A, Wang YM, Duan XF, Mueller T, Huang Y, Science, 348(6240), 1230 (2015)
  7. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM, Science, 315, 493 (2007)
  8. Engel T, Ertl G, in Advances in Catalysis, Vol. 28, pp. 1-78, edited by Eley DD, Pines H, Weez PE, Academic Press (1979).
  9. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B, Nat. Mater., 7(4), 333 (2008)
  10. Simonsen SB, Chorkendorff I, Dahl S, Skoglundh M, Sehested J, Helveg S, J. Catal., 281(1), 147 (2011)
  11. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M, J. Phys. Chem. B, 110(46), 23489 (2006)
  12. Shin K, Zhang L, An H, Ha H, Yoo M, Lee HM, Henkelman G, Kim HY, Nanoscale, 9, 5244 (2017)
  13. Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
  14. Perdew JP, Wang Y, Phys. Rev. B, 45, 13244 (1992)
  15. Blochl PE, Phys. Rev. B, 50, 17953 (1994)
  16. Carino EV, Kim HY, Henkelman G, Crooks RM, J. Am. Chem. Soc., 134(9), 4153 (2012)
  17. Kim HY, Henkelman G, ACS Catal., 3, 2541 (2013)
  18. Kim HY, Lee HM, Henkelman G, J. Am. Chem. Soc., 134(3), 1560 (2012)
  19. Ha H, An H, Yoo M, Lee J, Kim HY, J. Phys. Chem. C, 121, 26895 (2017)
  20. Kim HY, Henkelman G, J. Phys. Chem. Lett., 4, 216 (2013)