- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.28, No.6, 365-369, June, 2018
Pt 기반 이원계 나노입자의 산소 및 일산화탄소 흡착 특성에 대한 전자밀도함수이론 연구
Density Functional Theory Study of Separated Adsorption of O2 and CO on Pt@X(X = Pd, Ru, Rh, Au, or Ag) Bimetallic Nanoparticles
We perform density functional theory calculations to study the CO and O2 adsorption chemistry of Pt@X core@shell bimetallic nanoparticles (X = Pd, Rh, Ru, Au, or Ag). To prevent CO-poisoning of Pt nanoparticles, we introduce a Pt@X core-shell nanoparticle model that is composed of exposed surface sites of Pt and facets of X alloying element. We find that Pt@Pd, Pt@Rh, Pt@Ru, and Pt@Ag nanoparticles spatially bind CO and O2, separately, on Pt and X, respectively. Particularly, Pt@Ag nanoparticles show the most well-balanced CO and O2 binding energy values, which are required for facile CO oxidation. On the other hand, the O2 binding energies of Pt@Pd, Pt@Ru, and Pt@Rh nanoparticles are too strong to catalyze further CO oxidation because of the strong oxygen affinity of Pd, Ru, and Rh. The Au shell of Pt@Au nanoparticles preferentially bond CO rather than O2. From a catalysis design perspective, we believe that Pt@Ag is a better-performing Ptbased CO-tolerant CO oxidation catalyst.
Keywords:density functional theory;Core@Shell nanoparticle;heterogeneous catalysis;first principle;oxidation
- Yu WT, Porosoff MD, Chen JGG, Chem. Rev., 112(11), 5780 (2012)
- Wang JH, Chen H, Hu ZC, Yao MF, Li YD, Catal. Rev.-Sci. Eng., 57(1), 79 (2015)
- Greeley J, Mavrikakis M, Nat. Mater., 3(11), 810 (2004)
- Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH, Nat. Chem., 1, 37 (2009)
- Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA, Nat. Mater., 8, 126 (2008)
- Huang XQ, Zhao ZP, Cao L, Chen Y, Zhu EB, Lin ZY, Li MF, Yan AM, Zettl A, Wang YM, Duan XF, Mueller T, Huang Y, Science, 348(6240), 1230 (2015)
- Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM, Science, 315, 493 (2007)
- Engel T, Ertl G, in Advances in Catalysis, Vol. 28, pp. 1-78, edited by Eley DD, Pines H, Weez PE, Academic Press (1979).
- Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B, Nat. Mater., 7(4), 333 (2008)
- Simonsen SB, Chorkendorff I, Dahl S, Skoglundh M, Sehested J, Helveg S, J. Catal., 281(1), 147 (2011)
- Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M, J. Phys. Chem. B, 110(46), 23489 (2006)
- Shin K, Zhang L, An H, Ha H, Yoo M, Lee HM, Henkelman G, Kim HY, Nanoscale, 9, 5244 (2017)
- Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
- Perdew JP, Wang Y, Phys. Rev. B, 45, 13244 (1992)
- Blochl PE, Phys. Rev. B, 50, 17953 (1994)
- Carino EV, Kim HY, Henkelman G, Crooks RM, J. Am. Chem. Soc., 134(9), 4153 (2012)
- Kim HY, Henkelman G, ACS Catal., 3, 2541 (2013)
- Kim HY, Lee HM, Henkelman G, J. Am. Chem. Soc., 134(3), 1560 (2012)
- Ha H, An H, Yoo M, Lee J, Kim HY, J. Phys. Chem. C, 121, 26895 (2017)
- Kim HY, Henkelman G, J. Phys. Chem. Lett., 4, 216 (2013)