Macromolecular Research, Vol.26, No.6, 493-499, June, 2018
Chemically Robust Superhydrophobic Poly(vinylidene fluoride) Films with Grafting Crosslinkable Fluorinated Silane
E-mail:
A superhydrophobic surface with excellent chemical stability was fabricated using the spraying method, one of the most efficient technologies for producing large-area coatings at low cost. Poly(vinylidene fluoride) (PVDF) was used as a hydrophobic polymer material, and heptadecafluoro-1,1,2,2,-tetra-hydrodecyl)trichlorosilane (FTS), which reacts with moisture during curing, was used to improve the water repellency and durability. Spray coating of PVDF alone yielded PVDF nanostructures described by the Cassie-Baxter model. The water contact angle of a water droplet on this surface, however, was 128°, indicating that the surface was not superhydrophobic. On the other hand, spray-coating a mixed PVDF-FTS solution provided a complex and homogeneous nanostructured surface with excellent water repellency and a contact angle of up to 159°. Immersion of the PVDF-only film for 20 min in N,N-dimethylformamide (DMF), a good solvent for PVDF, led to complete dissolution of the film. By contrast, the PVDF-FTS film maintained its superhydrophobicity with a water contact angle of 151° after 20 min of immersion in DMF, and still exhibited a high contact angle of 142° after 1 h. The PVDF-FTS film developed in the present work should enable the production of large-area superhydrophobic coatings at low cost using a simple spray process. Moreover, the PVDF-FTS film displayed excellent stability against solvents, thus increasing its suitability for robust superhydrophobic applications.
Keywords:superhydrophobicity;poly(vinyliden fluoride);fluorinated silane;chemical robustness;spray coating
- Min WL, Jiang B, Jiang P, Adv. Mater., 20(20), 3914 (2008)
- Liu K, Yao X, Jiang L, Chem. Soc. Rev., 39, 3240 (2010)
- Li J, Yan L, Ouyang QL, Zha F, Jing ZJ, Li X, Lei ZQ, Chem. Eng. J., 246, 238 (2014)
- Wang Y, Xue J, Wang Q, Chen Q, Ding J, ACS Appl. Mater. Interfaces, 5, 3370 (2013)
- Zhang S, Lu F, Tao L, Liu N, Gao C, Feng L, Wei Y, ACS Appl. Mater. Interfaces, 5, 3370 (2013)
- Feng XJ, Jiang L, Adv. Mater., 18(23), 3063 (2006)
- Ou J, Hu W, Liu S, Xue M, Wang F, Li W, ACS Appl. Mater. Interfaces, 5, 3101 (2013)
- Ogihara H, Xie J, Okagaki J, Saji T, Langmuir, 28(10), 4605 (2012)
- Guo ZG, Liu WM, Su BL, J. Colloid Interface Sci., 353(2), 335 (2011)
- Mao-Gang G, Xiao-Liang X, Zhou Y, Yan-Song L, Ling L, Chin. Phys. B, 19, 056701 (2010)
- Kim DH, Kim Y, Kim BM, Ko JS, Cho CR, Kim JM, J. Micromech. Microeng., 21, 045003 (2011)
- Kim TY, Ingmar B, Bewilogua K, Oh KH, Lee KR, Chem. Phys. Lett., 436(1-3), 199 (2007)
- Ming W, Wu D, Benthem RV, With GD, Nano Lett., 5, 2298 (2005)
- Kim D, Kim J, Park HC, Lee KH, Hwang W, J. Micromech. Microeng., 18, 015019 (2008)
- Wenzel RN, Ind. Eng. Chem., 28, 988 (1936)
- Cao LL, Hu HH, Gao D, Langmuir, 23(8), 4310 (2007)
- Cassie ABD, Baxter S, Trans. Faraday Soc., 40, 546 (1944)
- Marmur A, Bittoun E, Langmuir, 25(3), 1277 (2009)
- Ma ML, Gupta M, Li Z, Zhai L, Gleason KK, Cohen RE, Rubner MF, Rutledge GC, Adv. Mater., 19(2), 255 (2007)
- Han DW, Steckl AJ, Langmuir, 25(16), 9454 (2009)
- Zhao Y, Xu Z, Wang X, Lin T, Appl. Surface Sci., 286, 364 (2013)
- Manabe K, Manabe K, Nishizawa S, Kyung KH, Shiratori S, ACS Appl. Mater. Interfaces, 6, 13985 (2014)
- Sung YH, Kim YD, Choi HJ, Shin R, Kang S, Lee H, Appl. Surface Sci., 349, 169 (2015)
- Li T, Paliy M, Wang X, Kobe B, Lau WM, Yang J, ACS Appl. Mater. Interfaces, 7, 10988 (2015)
- KawasegiN, Morita N, Yamada S, Takano N, Oyama T, Momota S, Taniguchi J, Miyamoto I, Appl. Surface Sci., 253, 3284 (2007)
- Miljkovic N, Enright R, Wang EN, ACS Nano, 6, 1776 (2012)
- Azarova NA, Owen JW, McLellan CA, Grimminger MA, Chapman EK, Anthony JE, Jurchescu OD, Org. Electron., 11, 1960 (2010)
- Vak D, Kim SS, Jo J, Oh SH, Na SI, Kim J, Kim DY, Appl. Phys. Lett., 91, 081 (2007)
- Zhang YF, Ge DT, Yang S, J. Colloid Interface Sci., 423, 101 (2014)
- Li J, Wu RN, Jing ZJ, Yan L, Zha F, Lei ZQ, Langmuir, 31(39), 10702 (2015)
- Li Y, Chen SS, Wu MC, Sun JQ, Adv. Mater., 26(20), 3344 (2014)
- Levkin PA, Svec F, Frechet JMJ, Adv. Funct. Mater., 19(12), 1993 (2009)
- Gilmore DL, Dykhuizen RC, Neiser RA, Roemer TJ, Smith MF, J. Therm. Spray Technol., 8, 576 (1999)
- Stoltenhoff T, Kreye H, Richter HJ, J. Therm. Spray Technol., 11, 542 (2002)
- Xu L, Karunakaran RG, Guo J, Yang S, ACS Appl. Mater. Interfaces, 4, 1118 (2012)
- Hankins MG, Resnick PJ, Clews PJ, Mayer TM, Wheeler DR, Tanner DM, Plass RA, Proc. SPIE, 4980, 238.
- Fairbank RWP, Wirth MJ, J. Chromatogr. A, 830, 285 (1999)
- Park S, Lee KS, Bozoklu G, Cal W, Nguyen ST, Ruoff RS, ACS Nano, 2, 572 (2008)
- Xu PS, Tang HD, Li SY, Ren J, Van Kirk E, Murdoch WJ, Radosz M, Shen YQ, Biomacromolecules, 5(5), 1736 (2004)