화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.63, 112-116, July, 2018
Nitrogen-doped bi-modal porous carbon nanostructure derived from glycine for supercapacitors
E-mail:
We prepared a nitrogen-doped bi-modal porous carbon nanostructure (G-500/20) using a template method with 500 and 20 nm SiO2 beads and glycine. The G500/20 has a surface area of 403 m2 g-1 with meso/macroporous structure and N-doping content of 5.9 at%. In the supercapacitor performance, G-500/ 20 exhibits superior specific capacitances of 19.5 and 5.3 F g-1 at 200 mV s-1 and 20 A g-1 in 6 M NaOH, compared to a commercial activated carbon. In particular, the superior capacitances of G500/20 at high scan rates and current densities were achieved due to the bi-modal porous structure and nitrogen doping effect.
  1. Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
  2. Zhu T, Zhou J, Li Z, Li S, Si W, Zhuo S, J. Mater. Chem. A, 2, 12545 (2014)
  3. Ya J, Wang Q, Wei T, Fan Z, Adv. Energy Mater., 4, 130081 (2014)
  4. Guan C, Zhao W, Hu Y, Lai Z, Li X, Sun S, Zhang H, Cheetham AK, Wang J, Nanoscale Horiz., 2, 99 (2017)
  5. Liu D, Zeng C, Qu D, Tang H, Li Y, Su BL, Qu D, J. Power Sources, 321, 10 (2016)
  6. Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
  7. Chen Y, Zhang X, Xie Z, ACS Nano, 9, 8054 (2015)
  8. Wen X, Zhang D, Yan T, Zhang J, Shi L, J. Mater. Chem. A, 1, 12334 (2013)
  9. Jo C, Hwang J, Song H, Dao AH, Kim YT, Lee SH, Hong SW, Yoon S, Lee J, Adv. Funct. Mater., 23, 3747 (2013)
  10. Guo SN, Shen HK, Tie ZF, Zhu S, Shi PH, Fan JC, Xu QJ, Min YL, J. Power Sources, 359, 285 (2017)
  11. Wu ZS, Sun Y, Tan YZ, Yang SB, Feng XL, Mullen K, J. Am. Chem. Soc., 134(48), 19532 (2012)
  12. Wang T, Wang LX, Wu DL, Xia W, Jia DZ, Sci. Rep., 5, 9591 (2015)
  13. Sun F, Gao JH, Pi XX, Wang LJ, Yang YQ, Qu ZB, Wu SH, J. Power Sources, 337, 189 (2017)
  14. You B, Wang L, Yao L, Yang J, Chem. Commun., 49, 5016 (2013)
  15. Li LM, Liu EH, Li J, Yang YJ, Shen HJ, Huang ZZ, Xiang XX, Li W, J. Power Sources, 195(5), 1516 (2010)
  16. Jeon J, Sharma R, Meduri P, Arey BW, Schaef HT, Lutkenhaus JL, Lemmon JP, Thallapally PK, Nandasiri MI, Mcgrail BP, Nune SK, ACS Appl. Mater. Interfaces, 6, 7214 (2014)
  17. Lee S, Lee YW, Kwak DH, Lee JY, Han SB, Sohn JI, Park KW, J. Ind. Eng. Chem., 43, 170 (2016)
  18. Lee S, Kwak DH, Han SB, Hwang ET, Kim MC, Lee JY, Lee YW, Park KW, Electrochim. Acta, 191, 805 (2016)
  19. Choi IA, Kwak DH, Han SB, Park JY, Park HS, Ma KB, Kim DH, Won JE, Park KW, Appl. Catal. B: Environ., 211, 235 (2017)
  20. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ, Adv. Funct. Mater., 19(11), 1800 (2009)
  21. Wang Y, Fugetsu B, Wang Z, Gong W, Sakata I, Morimoto S, Hashimoto Y, Endo M, Dresselhaus M, Terrones M, Sci. Rep., 7, 40259 (2017)
  22. Chen LF, Lu Y, Yu L, Lou XW, Energy Environ. Sci., 10, 1777 (2017)
  23. Fujita SI, Yoshida H, Arai M, C 3, 31 (2017).
  24. Ramakrishnan P, Shanmugam S, J. Power Sources, 316, 60 (2016)
  25. Tao H, Yan C, Robertson AW, Gao Y, Ding J, Zhang Y, Ma T, Sun Z, Chem. Commun., 53, 873 (2017)