화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.63, 41-47, July, 2018
Photoelectrochemical properties of Fe2O3 nanorods grown with an Na2SO4 additive
E-mail:
Fe2O3 photoelectrodes were grown using a microwave chemical bath deposition (MW-CBD) method with an Na2SO4 additive at various concentrations. We investigated the effects of the Na2SO4 additive concentration on the morphological, optical, structural, electrical, and photoelectrochemical properties of the Fe2O3 photoelectrodes using scanning electron microscopy, ultraviolet-visible spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy and potentiostat/galvanostat measurements, respectively. The Na2SO4 concentration was found to affect the properties of the Fe2O3 photoelectrodes, including the photoelectrochemical properties. Consequently, the highest photocurrent density value of 0.39 mA/cm2 was obtained from the sample prepared with an Na2SO4 concentration of 0.03 M.
  1. Chiang C, Epstein J, Brown A, Munday JN, Culver JN, Ehrman S, Nano Lett., 12, 6005 (2012)
  2. Chaudhary YS, Agrawal A, Shrivastav R, Satsangi VR, Dass S, Int. J. Hydrog. Energy, 29(2), 131 (2004)
  3. Cho IS, Chen Z, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng X, Nano Lett., 11, 4978 (2011)
  4. Kim HC, Kim SE, J. Korean Hydrogen Energy Soc., 1, 84 (1989)
  5. de Carvalho VAN, Luz RAD, Lima BH, Crespilho FN, Leite ER, Souza FL, J. Power Sources, 205, 525 (2012)
  6. Zhang ZH, Hossain MF, Takahashi T, Appl. Catal. B: Environ., 95(3-4), 423 (2010)
  7. Hisatomi T, Dotan H, Stefik M, Sivula K, Rothschild A, Gratzel M, Mathews N, Adv. Mater., 24(20), 2699 (2012)
  8. Satsangi VR, Kumari S, Singh AP, Shrivastav R, Dass S, Int. J. Hydrog. Energy, 33(1), 312 (2008)
  9. Zhang M, Luo W, Zhang N, Li Z, Yu T, Zou Z, Electrochem. Commun., 23, 41 (2014)
  10. Sivula K, Formal FL, Gratzel M, Chem. Mater., 21, 2862 (2009)
  11. Yin CY, Minakshi M, Ralph D, Jiang ZT, Xie Z, Guo H, J. Alloy. Compd., 509, 9821 (2011)
  12. Rahman G, Joo OS, Int. J. Hydrog. Energy, 37(19), 13989 (2012)
  13. Ekwealor ABC, Ezema FI, J. Ovonic Res., 9, 35 (2013)
  14. Orel B, Macek M, Svegl F, Kalcher K, Thin Solid Films, 246(1-2), 131 (1994)
  15. Kumari S, Tripathi C, Singh AP, Chauhan D, Shrivastav R, Dass S, Satsangi VR, Curr. Sci., 91, 1062 (2006)
  16. Saremi-Yarahmadi S, Vaidhyanathan B, Wijayantha KGU, Int. J. Hydrog. Energy, 35(19), 10155 (2010)
  17. Li S, Qin G, Zuo L, Mater. Sci. Forum, 702, 999 (2012)
  18. Qin DD, Tao CL, In SI, Yang ZY, Mallouk TE, Bao NZ, Grimes CA, Energy Fuels, 25(11), 5257 (2011)
  19. Cao D, Luo W, Li M, Feng J, Li Z, Zou Z, CrystEngComm, 15, 2386 (2013)
  20. Peiro AM, Ayllon JA, Peral J, Domenech X, Domingo C, J. Cryst. Growth, 285 (6) (2005).
  21. Dong WT, Wu SX, Chen DP, Jiang XW, Zhu CS, Chem. Lett., 29(5), 496 (2000)
  22. Katsuki H, Komarneni S, J. Am. Ceram. Soc., 86(1), 183 (2003)
  23. Morales MP, Carreno TG, Serna CJ, J. Mater. Res., 7(9), 2538 (1992)
  24. Miao H, Li J, Lin YQ, Liu XD, Zhang QM, Fu J, Chin. Sci. Bull., 56, 2383 (2011)
  25. Tong Q, Jiao T, Guo H, Zhou J, Wu Y, Zhang Q, Peng Q, Sci.Adv. Mater., 8(5), 1005 (2016)
  26. Pei Z, Zheng X, Nanosci. Nanotechnol. Lett., 8(5), 444 (2016)
  27. Shang X, Guo Z, Gan W, Zhou R, Ma C, Hu K, Niu H, Xu J, Ionics, 22, 435 (2016)
  28. Music S, Maljkovie M, Nagy IC, Mater. Lett., 31, 43 (1997)
  29. Azad A, Kim SJ, Glass Phys. Chem., 42, 458 (2016)
  30. Deng B, Li Q, Wang C, Adv. Mater. Res., 239-242, 886 (2011)
  31. Zhang X, Li Q, Mater. Lett., 62, 988 (2008)
  32. Xie X, Yang H, Zhang F, Li L, Ma J, Jiao H, Zhang J, J. Alloy. Compd., 477, 90 (2009)
  33. Chen S, Xin Y, Zhou Y, Zhang F, Ma Y, Zhou H, Qi L, J. Mater. Chem. A, 3.25, 13377 (2015)
  34. Shaislamov U, Krishnamoorthy K, Kim SJ, Chun W, Lee HJ, RSC Adv., 6, 103049 (2016)
  35. Dubale AA, Su WN, Tamirat AG, Pan CJ, Aragaw BA, Chen HM, Chen CH, Hwang BJ, J. Mater. Chem. A, 2, 18383 (2014)
  36. Wang L, Zhang K, Hu Z, Duan W, Cheng F, J. Chen, Nano Res., 7(2), 199 (2014)
  37. Elias J, Tena-Zaera R, Levy-Clement C, Thin Solid Films, 515(24), 8553 (2007)
  38. Akasaki I, Amano H, Koide Y, Hiramatsu K, Sawaki N, J. Cryst. Growth, 98, 209 (1989)
  39. Tamura K, Yoshida Y, Hasegawa O, Sudoh O, Hirabayashi I, Takai Y, Advances in Superconductivity XII, Springer, Tokyo, pp. 969-971 2000.
  40. Milan R, Cattarin S, Comisso N, Baratto C, Kaunisto K, Tkachenko NV, Concina I, Sci. Rep., 6 (2016)
  41. Zeng S, Tang K, Li T, Liang Z, J. Phys. Chem., 114, 274 (2010)
  42. Kim TG, Ryu H, Lee WJ, Yoon JH, J. Korean Phys. Soc., 66, 1586 (2015)
  43. Kayes BM, Atwater HA, J. Appl. Phys., 97, 114302 (2005)
  44. Jang JT, Ryu H, J. Nanoelectron. Optoelectron., 9(1), 107 (2014)
  45. Wang M, Kim EJ, Hahn SH, Park C, Koo KK, Cryst. Growth Des., 8, 501 (2008)
  46. Algar W, Russ I, Medintz LG, Dawson P, Concepts and Applications, John Wiley & Sons, 2017.
  47. Liyanage WPR, Wilson JS, Kinzel EC, Durant BK, Nath M, Solar Energy Mater. Solar Cells, 133, 260 (2015)
  48. Sun Z, Feng X, Hou W, Nanotechnology, 18, 455607 (2007)
  49. Zhao X, Luo W, Feng J, Li M, Li Z, Yu T, Adv. Energy Mater., 4, 160178 (2014)
  50. Zheng XD, Shen SH, Ren F, Cai GX, Xing Z, Liu YC, Liu D, Zhang GZ, Xiao XH, Wu W, Jiang CZ, Int. J. Hydrog. Energy, 40(15), 5034 (2015)
  51. Rod K, Quinn RD, Baughman NRJ, Mater. Res. Bull., 11, 1011 (1976)
  52. Liu SX, Zheng LX, Yu PP, Han SC, Fang XS, Adv. Funct. Mater., 26(19), 3331 (2016)
  53. Ganeshraja AS, Rajkumar K, Zhu K, Li X, Thirumurugan S, Xu W, Zhang J, Yang M, Anbalagan K, Wang J, RSC Adv., 6, 72791 (2016)
  54. Shinde PS, Choi SH, Kim Y, Ryu J, Jang JS, Phys. Chem. Chem. Phys., 18, 2495 (2016)
  55. Ishikawa K, Yoshikawa K, Okada N, Phys. Rev. B, 37, 5852 (1988)
  56. Ahn KS, Shet S, Deutsch T, Jiang CS, Yan YF, Al-Jassim M, Turner J, J. Power Sources, 176(1), 387 (2008)
  57. Baturay S, Tombak A, Kaya D, Ocak YS, Tokus M, Aydemir M, Kilicoglu T, J. Sol-Gel Sci. Technol., 78, 422 (2016)
  58. Anderson DZ, Dana Z, Victor M, John E, Opt. Lett., 16(11), 796 (1991)
  59. Gelderman K, Lee L, Donne SW, J. Chem. Educ., 84, 685 (2007)
  60. Kumari S, Tripathi C, Singh AP, Chauhan D, Shrivastav R, Dass S, Satsangi VR, Curr. Sci., 19, 1062 (2006)
  61. Yang Y, Forster M, Ling Y, Wang G, Zhai T, Tong Y, Cowan AJ, Li Y, Angew. Chem., 128, 3464 (2016)
  62. Bemana H, Rashid-Nadimi S, Electrochim. Acta, 229, 396 (2017)
  63. Muller A, Kondofersky I, Folger A, Rohlfing DF, Bein T, Scheu C, Mater. Res. Express, 4, 016409 (2017)
  64. Shen S, Zhou J, Dong CL, Hu Y, Tseng EN, Guo P, Guo L, Mao SS, Sci. Rep., 4, 6627 (2014)
  65. Guo Y, Fu Y, Liu Y, Shen S, RSC Adv., 70, 36947 (2014)
  66. Chou JC, Lin SA, Lee CY, Gan JY, J. Mater. Chem. A, 1, 5908 (2013)
  67. Wickman B, Fanta AB, Burrows A, Hellman A, Wagner JB, Iandolo B, Sci. Rep., 7, 40500 (2017)
  68. Phuan YW, Chong MN, Zhu T, Yong ST, Chan ES, Mater. Res. Bull., 69, 71 (2015)