화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.56, No.3, 370-375, June, 2018
분별침전에서 친수성 고분자 물질을 이용한 (+)-dihydromyricetin의 입자크기 감소
Decreasing Particle Size of (+)-Dihydromyricetin Using Hydrophilic Polymer in Fractional Precipitation
E-mail:
초록
본 연구에서는 생리활성물질 (+)-dihydromyricetin의 입자크기 감소를 위하여 친수성 고분자 물질을 첨가하여 분별 침전을 수행하였다. 고분자 물질(HPMC 2910, PVP K90, PVA)이 첨가된 분별침전을 통해 (+)-dihydromyricetin 입자 크기를 감소시킬 수 있었다. 특히 분별침전 시 HPMC 2910 (0.1%, w/v)을 첨가할 경우, 대조군에 비하여 입자크기가 38-68 μm (32-40%) 정도 감소하여 입자크기 감소에 가장 효과적이었다. 또한 (+)-dihydromyricetin침전물의 입자크기는 친수성 고분자 물질 첨가에 따른 침전용액의 제타전위 절대값에 반비례함을 알 수 있었다.
In this study, we have applied fractional precipitation with hydrophilic polymer in order to decrease the particle size of the (+)-dihydromyricetin from plant materials. When compared with the case where no hydrophilic polymer was employed, the addition of hydrophilic polymer in fractional precipitation resulted in a considerable decrease in the size of the (+)-dihydromyricetin precipitate. Among the polymers used, HPMC 2910 was the most effective for inhibition of precipitate growth. A polymer concentration of 0.1% (w/v) yielded the smallest particle size. The particle size was reduced by ~40% compared to control. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential of the suspension with polymer.
  1. An SW, Kim YG, Kim MH, Lee BI, Lee SI, Lee SH, Kwon HI, Hwang B, Lee HY, Korean J. Medicinal Crop Sci., 7, 263 (1999)
  2. Hase K, Basnet P, Kadota S, Namba T, J. Trad. Med., 14, 28 (1997)
  3. Lee MK, Kim YG, An SW, Kim MH, Lee JH, Lee HY, Korean J. Medicinal Crop Sci., 7, 185 (1999)
  4. Sakai K, Yamane T, Saitoh Y, Ikawa C, Nishihata T, Chem. Pharm. Bull., 35, 4597 (1987)
  5. Yoo SM, Mun S, Kim JH, Process Biochem., 41(3), 567 (2006)
  6. Du Q, Cai W, Xia M, Ito Y, J. Chromatogr. A, 973, 217 (2002)
  7. Yohsikawa M, Murakami T, Chem Pharm Bull, 44, 1736 (1996)
  8. Yohsikawa M, Murakami T, Ueda T, Yoshizumi S, Ninomiya K, Murakami N, Matsuda H, Satio M, Fujii W, Tanaka T, Yakugaku Zasshi., 117, 108 (1997)
  9. Cho EB, Cho WK, Cha KH, Park JS, Int. J. Pharm., 396, 91 (2010)
  10. Yeo SD, Kim MS, Lee JC, J. Supercrit. Fluids, 25(2), 143 (2003)
  11. Pyo SH, Kim MS, Cho JS, Song BK, Han BH, Choi HJ, J. Chem. Technol. Biotechnol., 79, 1162 (2005)
  12. Ruala J, Eerikaine H, Kauppinen EI, Int. J. Pharm., 284, 13 (2004)
  13. Chen X, Young TJ, Sarkari M, Williams III RO, Johnston KP, Int. J. Pharm., 242, 3 (2002)
  14. Vehring R, Pharm. Res., 25, 999 (2008)
  15. Weers JG, Tarara TE, Clark AR, Expert Opin. Drug Deliv., 4, 297 (2007)
  16. Kawashima Y, York P, Adv. Drug Deliv. Rev., 60, 297 (2008)
  17. Lee KH, Kim JH, Biotechnol. Bioproc. Eng., 13, 274 (2008)
  18. Lim MK, Kim JH, Korean J. Biotechnol. Bioeng., 42, 25 (2014)
  19. Ha GS, Kim JH, Korean Chem. Eng. Res., 53(6), 831 (2015)
  20. Dong Y, Ng WK, Shen S, Kim S, Tan RB, Int. J. Pharm., 375, 84 (2009)
  21. Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF, Int. J. Pharm., 374, 106 (2009)
  22. Dalvi SV, Dave RN, Ind. Eng. Chem. Res., 48(16), 7581 (2009)
  23. Labouret AD, Thioune O, Fessi H, Devissaguet JP, Puisieux F, Drug Dev. Ind. Pharm., 21, 229 (1995)
  24. Stainmesse S, Orecchioni AM, Nakache E, Puisieux F, Fessi H, Colloid Polym. Sci., 273, 505 (1995)
  25. Thioune O, Fessi H, Devissaguet JP, Puisieux F, Int. J. Pharm., 146, 233 (1997)
  26. Pouretedal HR, Int. Nano Lett., 4, 103 (2014)
  27. Kim MJ, Kim JH, Korean Chem. Eng. Res., 54(2), 278 (2016)