- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.28, No.5, 261-267, May, 2018
마그넬리상 합성과 광전기화학셀 전극 응용
Synthesis of Magneli Phases and Application to the Photoelectrochemical Electrode
E-mail:
Hydrothermal synthesis of highly crystalline TiO2 nanorods is a well-developed technique and the nanorods have been widely used as the template for growth of various core-shell nanorod structures. Magneli/CdS core-shell nanorod structures are fabricated for the photoelectrochemical cell (PEC) electrode to achieve enhanced carrier transport along the metallic magneli phase nanorod template. However, the long and thin TiO2 nanorods may form a high resistance path to the electrons transferred from the CdS layer. TiO2 nanorods synthesized are reduced to magneli phases, TixO2x-1, by heat treatment in a hydrogen environment. Two types of magneli phase nanorods of Ti4O7 and Ti3O5 are synthesized. Structural morphology and X-ray diffraction analyses are carried out. CdS nano-films are deposited on the magneli nanorods for the main light absorption layer to form a photoanode, and the PEC performance is measured under simulated sunlight irradiation and compared with the conventional TiO2/CdS core-shell nanorod electrode. A higher photocurrent is observed from the stand-alone Ti3O5/CdS coreshell nanorod structure in which the nanorods are grown on both sides of the seed layer.
- Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS, Chem. Rev., 110(11), 6446 (2010)
- Abe R, J. Photochem. Photobiol. C, 11, 179 (2010)
- Li X, Yu J, Low J, Fang Y, Xiao J, Chen X, J. Mater. Chem. A, 3, 2485 (2015)
- Li Z, Luo W, Zhang M, Feng J, Zou Z, Energy Environ. Sci., 6, 347 (2013)
- Sun WT, Yu Y, Pan HY, Gao XF, Chen Q, Peng LM, J. Am. Chem. Soc., 130(4), 1124 (2008)
- Wang H, Bai Y, Zhang H, Zhang Z, Li J, Guo L, J. Phys. Chem. C, 114, 16451 (2010)
- Qi X, She G, Liu Y, Mu L, Shi W, Chem. Commun., 48, 242 (2012)
- Li J, Hoffmann MW, Shen H, Fabrega C, Prades JD, Andreu T, Hernandez-Ramirez F, Mathur S, J. Mater. Chem., 22, 20472 (2012)
- Hieu HN, Vuong NM, Kim D, J. Electrochem. Soc., 160(11), H852 (2013)
- Hieu HN, Dung NQ, Kim J, Kim D, Nanoscale, 5, 5530 (2013)
- Wang XD, Li ZD, Shi J, Yu YH, Chem. Rev., 114(19), 9346 (2014)
- Greene LE, Law M, Tan DH, Montano M, Goldberger J, Somorjai G, Yang P, Nano Lett., 5, 1231 (2005)
- Acha C, Monteverde M, Nunez-Regueiro M, Kuhn A, Franco MA, Eur. Phys. J. B, 34, 421 (2003)
- Zheng L, Sens. Actuators B-Chem., 88, 115 (2003)
- Kim HS, Lee JW, Yantara N, Boix PP, Kulkarni SA, Mhaisalkar S, Gratzel M, Park NG, Nano Lett., 13, 2412 (2013)
- Zhang Z, Hwang JY, Ning M, Li X, Int. J. Hydrog. Energy, 37(21), 16018 (2012)
- Li YX, Guo M, Zhang M, Wang XD, Mater. Res. Bull., 44(6), 1232 (2009)
- Gusev A, Avvakumov E, Vinokurova O, Sci. Sintering, 35, 141 (2003)
- Khallaf H, Oladeji IO, Chai GY, Chow L, Thin Solid Films, 516(21), 7306 (2008)
- Wang G, Liu Y, Ye J, Qiu W, J. Alloy. Compd., 704, 18 (2017)
- Quang ND, Kim D, Hien TT, Kim D, Hong SK, Kim C, J. Electrochem. Soc., 163(6), H434 (2016)
- Vuong NM, Hien TT, Quang ND, Chinh ND, Lee DS, Kim D, Kim D, J. Power Sources, 317, 169 (2016)
- Hamid SBA, Teh SJ, Lai CW, Perathoner S, Centi G, J. Energy Chem., 26, 302 (2017)
- Wang J, Chen C, Ren Z, Wang Z, Semicond. Sci. Technol., 29, 055006 (2014)
- Li Y, Hao Y, Sun S, Sun B, Pei J, Zhang Y, Xu D, Liu L, RSC Advances, 3, 1541 (2013)
- Cai Y, Stromme M, Welch K, PLoS One, 8, e75929 (2013)