- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.35, No.6, 1380-1387, June, 2018
Effect of inlet particle arrangement on separating property of a cyclone separator
E-mail:
Different arrangements of particles on the inlet section exert different effects on the separation property of a cyclone separator. Sorting classifier with different heights was connected in series with a conventional cyclone, positive rotation cyclone, and reverse rotation cyclone respectively, to investigate the effect of particle arrangement on the separation property and inner flow field. Results indicate that the implementation of a sorting classifier increases the pressure drop and energy consumption of a cyclone separator. The taller the sorting classifier, the larger the flow is. The energy consumption in positive rotation cyclone is closer to that in reverse rotation cyclone. Meanwhile, the tangential velocity in inner flow field is higher and the separating property is enhanced. The reverse rotation cyclone relieves the fishhook effect, whereas the positive rotation cyclone eliminates such effect. The reverse and positive rotation cyclones demonstrate an improved separating property for particles smaller and greater than 1 μm, respectively. Moreover, the reverse rotation cyclone demonstrates superior overall separation, but the positive rotation cyclone demonstrates a greater classification effect than the reverse rotation cyclone.
Keywords:Cyclone Separator;Particle Arrangement;Particle Image Velocimetry (PIV);Separating Property
- Chow JC, Watson JG, Mauderly JL, Costa DL, Wyzga R, J. Air Waste Manage. Assoc., 56, 1368 (2006)
- Antonella Z, Joel S, Environ. Health Perspect., 117, 898 (2009)
- Michael B, Greg F, Joseph JF, Aaron C, Environ. Sci. Technol., 50, 79 (2016)
- Movafaghian S, Jaua-Marturet JA, Mohan RS, Shoham O, Kouba GE, Int. J. Multiph. Flow, 26(6), 999 (2000)
- Zhang YH, Liu AL, Ma L, Wang YM, Aerosol. Air Qual. Res., 16, 2287 (2016)
- Ma L, Wu JP, Zhang YH, Shen QS, Li JP, Wang HL, Aerosol. Air Qual. Res., 14, 1675 (2014)
- Ma L, Shen QS, Li JP, Zhang YH, Wu JP, Wang HL, Chem. Eng. Technol., 37(6), 1072 (2014)
- Ma L, Yang Q, Huang Y, Qian P, Wang JG, Chem. Eng. Technol., 36(4), 696 (2013)
- Haig CW, Hursthouse A, McIlwain S, Sykes D, Powder Technol., 258, 110 (2014)
- Gutierrez-Torres CD, Quinto-Diez P, Jimenez-Bernal JA, Lopez-Lobato A, Barbosa-Saldana JG, Int. J. Miner. Process., 102, 156 (2012)
- Elsayed K, Lacor C, Appl. Math. Model., 35, 1952 (2011)
- Misiulia D, Andersson AG, Lundstrom TS, Chem. Eng. Res. Des., 102, 307 (2015)
- Qian FP, Wu YP, Chem. Eng. Res. Des., 87(12A), 1567 (2009)
- Wang A, Yan XK, Wang LJ, Cao YJ, Liu JT, Sep. Purif. Technol., 149, 308 (2015)
- Hsu CY, Wu RM, Dry. Technol., 28, 916 (2010)
- Fu PB, Wang F, Ma L, Yang XJ, Wang HL, Sep. Purif. Technol., 158, 357 (2016)
- Fu PB, Wang F, Yang XJ, Ma L, Cui X, Wang HL, Environ. Sci. Technol., 51, 1587 (2017)
- Ma L, Fu PB, Wu JP, Wang F, Li JP, Shen QS, Wang HL, Aerosol. Air Qual. Res., 15, 2456 (2015)
- Yang Q, Lv WJ, Ma L, Wang HL, Sep. Purif. Technol., 102, 15 (2013)
- Hiraiwa Y, Oshitari T, Fukui K, Yamamoto T, Yoshida H, Sep. Purif. Technol., 118, 670 (2013)
- Wang ZB, Chu LY, Chen WM, Wang SG, Chem. Eng. J., 138(1-3), 1 (2008)
- Liu PK, Chu LY, Wang J, Yul YF, Chem. Eng. Technol., 31(3), 474 (2008)
- Xu Y, Wang JG, Zhao SL, Bai ZS, Chem. Eng. Res. Des., 94, 691 (2015)
- Wang JG, Bai ZS, Yang Q, Fan Y, Wang HL, Sep. Purif. Technol., 163, 120 (2016)