Korean Journal of Chemical Engineering, Vol.35, No.6, 1297-1302, June, 2018
His-tagged protein immobilization on cationic ferrite magnetic nanoparticles
E-mail:,
Magnetic nanoparticles have been applied in various fields because of their interesting magnetic properties. Immobilization on magnetic nanoparticles is a very important step in functionalizing them. We examined protein immobilization efficiency using interactions between his-tagged enhanced green fluorescence protein and affordable cationic ferrite magnetic nanoparticles for the first time. Four types of ferrite magnetic nanoparticles were verified: cobalt iron oxide, copper iron oxide, nickel iron oxide, and iron (III) oxide as negative controls. Among the four ferrite magnetic nanoparticles, copper ferrite magnetic nanoparticle was confirmed to have the highest immobilization efficiency at 3.0mg proteins per gram ferrite magnetic nanoparticle and 78% of total enhanced green fluorescence protein. In addition, the maximum binding efficiency was determined for copper ferrite magnetic nanoparticle. Consequently, this newly verified his-tag-immobilizing capacity of copper ferrite magnetic nanoparticle could provide a facile, capable, and promising strategy for immobilizing his-tagged proteins or peptides with high purity for biosensors, magnetic separation, or diagnostics.
- Li XM, Wei JR, Aifantis KE, Fan YB, Feng QL, Cui FZ, Watari F, J. Biomed. Mater. Res. A, 104, 1285 (2016)
- Lee IS, Lee N, Park J, Kim BH, Yi YW, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T, J. Am. Chem. Soc., 128(33), 10658 (2006)
- Gu JL, Tong HF, Sun LY, Biotechnol. Bioproc. E,, 22, 76 (2017)
- El-Sherbiny IM, Elbaz NM, Sedki M, Elgammal A, Yacoub MH, Nanomedicine, 12, 387 (2017)
- Sun C, Lee JS, Zhang M, Adv. Drug. Deliv. Rev., 60, 1252 (2008)
- Fortin JP, Wilhelm C, Servais J, Menager C, Bacri JC, Gazeau F, J. Am. Chem. Soc., 129(9), 2628 (2007)
- Lu AH, Salabas EL, Schuth F, Angew. Chem.-Int. Edit., 46, 1222 (2007)
- Xu J, Sun J, Wang Y,Sheng J, Wang F, Sun M, Molecules, 19, 11465 (2014)
- Xu CJ, Xu KM, Gu HW, Zheng RK, Liu H, Zhang XX, Guo ZH, Xu B, J. Am. Chem. Soc., 126(32), 9938 (2004)
- Park HY, Schadt MJ, Wang L, Lim IIS, Njoki PN, Kim SH, Jang MY, Luo J, Zhong CJ, Langmuir, 23(17), 9050 (2007)
- Wang W, Xu Y, Wang DIC, Li Z, J. Am. Chem. Soc., 131(36), 12892 (2009)
- Xu CJ, Xu KM, Gu HW, Zhong XF, Guo ZH, Zheng RK, Zhang XX, Xu B, J. Am. Chem. Soc., 126(11), 3392 (2004)
- Yang JB, Ni KF, Wei DZ, Ren YH, Biotechnol. Bioproc. E., 20, 901 (2015)
- Rashid Z, Naeimi H, Zarnani AH, Mohammadi F, Ghahremanzadeh R, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 80, 670 (2017)
- Zhou Y, Yuan SF, Liu Q, Yang DD, Wang Y, Gao L, Hang J, Shi HF, Sci. Rep.-Uk, 7, 41741 (2017)
- Lee J, Chang JH, Nanoscale Res. Lett., 9, 647 (2014)
- Kobayashi T, Morone N, Kashiyama T, Oyamada H, Kurebayashi N, Murayama T, PLoS One, 3, e3822 (2008)
- Bradford MM, Anal. Biochem., 72, 248 (1976)
- Balint EE, Petres J, Szabo M, Orban CK, Szilagyi L, Abraham B, J. Fluoresc., 23, 273 (2013)
- Gaberc-Porekar V, Menart V, J. Biochem. Biophys. Methods, 49, 335 (2001)
- Ueda EK, Gout PW, Morganti L, J. Chromatogr. A, 988, 1 (2003)
- Bornhorst JA, Falke JJ, Methods Enzymol., 326, 245 (2000)
- Arnau J, Lauritzen C, Petersen GE, Pedersen J, Protein Expres. Purif., 48, 1 (2006)
- Nabiyouni G, Fesharaki MJ, Mozafari M, Amighian J, Chin. Phys. Lett., 27, 126401 (2010)
- Venkatesan K, Babu DR, Bai MPK, Supriya R, Vidya R, Madeswaran S, Anandan P, Arivanandhan M, Hayakawa Y, Int. J. Nanomedicine, 10 Supp, 189 (2015)
- Liu BL, Fu YP, Wang ML, J. Nanosci. Nanotechnol., 9, 1491 (2009)