화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.30, No.2, 89-98, May, 2018
Electroosmotic flow of biorheological micropolar fluids through microfluidic channels
E-mail:
An analytical analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed as sinusoidal wavy to analyze the peristaltic flow nature. We consider that the wavelength of the wall motion is much larger as compared to the channel width to validate the lubrication theory. To simplify the Poisson Boltzmann equation, we also use the Debye-Huckel linearization. We consider governing equation for micropolar fluid in absence of body force and couple effects however external electric field is employed. The solutions for axial velocity, spin velocity, flow rate, pressure rise, and stream functions subjected to given physical boundary conditions are computed. The effects of pertinent parameters like Debye length and Helmholtz-Smoluchowski velocity which characterize the EDL phenomenon and external electric field, coupling number and micropolar parameter which characterize the micropolar fluid behavior, on peristaltic pumping are discussed through the illustrations. The results show that peristaltic pumping may alter by applying external electric fields. This model can be used to design and engineer the peristalsis-lab-on-chip and micro peristaltic syringe pumps for biomedical applications.
  1. Akbar NR, Nadeem S, Appl. Nanosci., 3, 461 (2013)
  2. Bandopadhyay A, Chakraborty S, Phys. Chem. Chem. Phys., 17, 7282 (2015)
  3. Bazant MZ, Squires TM, Phys. Rev. Lett., 92, 066101 (2004)
  4. Bello MS, Besi PD, Rezzonico R, Righetti PG, Casiraghi E, Electrophoresis, 15, 623 (1994)
  5. Bhatti MM, Zeeshan A, Ellahi R, Comput. Biol. Med., 78, 29 (2016)
  6. Bhatti MM, Zeeshan A, Ellahi R, Microvasc. Res., 110, 32 (2017)
  7. Bhatti MM, Zeeshan A, Ellahi R, Ijaz N, J. Mol. Liq., 230, 237 (2017)
  8. Bonaccurso E, Kappl M, Butt HJ, Phys. Rev. Lett., 88, 076103 (2002)
  9. Burgreen D, Nakache FR, J. Phys. Chem., 68, 1084 (1964)
  10. Chakraborty S, J. Phys. D-Appl. Phys., 39, 5356 (2006)
  11. Chakraborty S, Encyclopedia of Microfluidics and Nanofluidics, Springer Science & Business Media, New York, 845-858 2015.
  12. Ding Z, Jian Y, Yang L, Appl. Math. Mech.-Engl. Ed., 37, 769 (2016)
  13. Ellahi R, Bhatti MM, Pop I, Int. J. Numer. Methods Heat Fluid Flow, 26, 1802 (2016)
  14. Ellahi R, Bhatti MM, Khalique CM, J. Mol. Liq., 241, 1059 (2017)
  15. Eringen AC, J. Math. Mech., 16, 1 (1966)
  16. Goswami P, Chakraborty J, Bandopadhyay A, Chakraborty S, Microvasc. Res., 103, 41 (2016)
  17. Hayat T, Ali N, Abbas Z, Phys. Lett. A, 370, 331 (2007)
  18. Keramati H, Sadeghi A, Saidi MH, Chakraborty S, Int. J. Heat Mass Transf., 92, 244 (2016)
  19. Kim SJ, Wang YC, Lee JH, Jang H, Han J, Phys. Rev. Lett., 99, 044501 (2007)
  20. Kiran GR, Radhakrishnamacharya G, Beg OA, J. Mech. Med. Biol., 17, 175001 (2017)
  21. Levine S, Marriott JR, Neale G, Epstein N, J. Colloid Interface Sci., 52, 136 (1975)
  22. Liu M, Yang J, Microvasc. Res., 78, 14 (2009)
  23. Matin MH, Ohshima H, J. Colloid Interface Sci., 476, 167 (2016)
  24. Misra JC, Chandra S, Herwig H, J. Hydrodyn. Ser. B., 27, 350 (2015)
  25. Obliger A, Jardat M, Coelho D, Bekri S, Rotenberg B, Phys. Rev. E, 89, 043013 (2014)
  26. Olivares ML, Vera-Candioti L, Berli CLA, Electrophoresis, 30(5), 921 (2009)
  27. Pandey SK, Tripathi D, Z. Naturfors. Sect. A-J. Phys. Sci., 66, 181 (2011)
  28. Papautsky I, Brazzlea J, Ameelb T, Fazierac AB, Sens. Actuators A-Phys., 73, 101 (1999)
  29. Prakash S, Zambrano JA, Rangharajan KK, Rosenthal-Kim E, Vasquez N, Conlisk AT, Microfluid. Nanofluid., 20, 1 (2016)
  30. Prakash S, Zambrano HA, Fuest M, Boone C, Rosenthal-Kim E, Vasquez N, Conlisk AT, Microfluid. Nanofluid., 19, 1455 (2015)
  31. Rice CL, Whitehead R, J. Phys. Chem., 69, 4017 (1965)
  32. Sarkar S, Ganguly S, Dutta P, Int. J. Heat Mass Transf., 100, 451 (2016)
  33. Shapiro AH, Jaffrin MY, Weinberg SL, J. Fluid Mech., 37, 799 (1969)
  34. Shit GC, Roy M, Int. J. Appl. Comput. Math., 1, 121 (2015)
  35. Shit GC, Ranjit NK, Sinha A, J. Bionic Eng., 13, 436 (2016)
  36. Siddiqui AA, Lakhtakia A, J. Phys. A-Math. Theor., 42, 355501 (2009)
  37. Siddiqui AA, Lakhtakia A, Proc. R. Soc. London Ser. A-Mathe. Phys. Eng. Sci., 465, 501 (2009)
  38. Siddiqui AA, Lakhtakia A, Appl. Math. Mech.-Engl. Ed., 34, 1305 (2013)
  39. Tripathi D, Chaube MK, Gupta PK, pl. Math. Mech.-Engl. Ed., 32, 1587 (2011)
  40. Tripathi D, Bhushan S, Beg OA, Colloids Surf. A: Physicochem. Eng. Asp., 506, 32 (2016)
  41. Uematsu Y, Araki T, J. Chem. Phys., 139, 094901 (2013)
  42. Zimmerman WB, Rees JM, Craven TJ, Microfluid. Nanofluid., 2, 481 (2006)