화학공학소재연구정보센터
Langmuir, Vol.34, No.4, 1340-1346, 2018
Modeling Nanoparticle Dispersion in Electrospun Nanofibers
The quality of nanoparticle dispersion in a polymer matrix significantly influences the macroscopic properties of the composite material. Like general polymer-nanoparticle composites, electrospun nanofiber nanoparticle composites do not have an adopted quantitative model for dispersion throughout the polymer matrix, often relying on a qualitative assessment. Being such an influential property, quantifying dispersion is essential for the process of optimization and understanding the factors influencing dispersion. Here, a simulation model was developed to quantify the effects of nanoparticle volume loading (phi) and fiber-to-particle diameter ratios (D/d) on the dispersion in an electrospun nanofiber based on the interparticle distance. A dispersion factor is defined to quantify the dispersion along the polymer fiber. In the dilute regime (phi < 20%), three distinct regions of the dispersion factor were defined with the highest quality dispersion shown to occur when geometric constraints limit fiber volume accessibility. This model serves as a standard for comparison for future experimental studies and dispersion models through its comparability with microscopy techniques and as a way to quantify and predict dispersion in electrospinning polymer-nanoparticle systems with a single performance metric.