Langmuir, Vol.34, No.13, 3797-3805, 2018
Interaction of Hydrophobic Ionic Liquids with Lipids in Langmuir Monolayers
The interaction of two ionic liquids, trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)-imide and trihexyl(tetradecyl)phosphonium dicyanamide, [P-6 6 6 14]-[Ntf(2)] and [P-6 6 6 14]/[N(CN)(2)], with several long-chained lipids with a different net charge at the hydrophilic group, a cationic surfactant, dioctadecyldimethylammonium bromide (DODAB), a zwitterionic phospholipid (DPPC), an anionic phospholipid (DPPG), and the neutral stearic acid (SA), was investigated at the air-water interface using the Langmuir trough technique. The experimental surface pressure-area (pi-A) isotherms obtained for selected compositions of each binary system reveal distinct interfacial behavior. The degree and the nature of the IL-lipid interaction strongly depend on the charge distribution in the lipid polar group. Miscibility, or immiscibility, at the monolayer was inferred from the comparison of the experimental pi-A isotherm with the theoretical curve calculated for the corresponding ideal mixture based on the pi-A isotherms of the pure components. Phase separation and partial miscibility occurred in IL/DODAB and IL/DPPC systems, respectively. In both the IL/DPPG and the IL/SA systems, a new catanionic complex was found. For the IL/SA system, the catanionic complex formation varies with the subphase pH.