Journal of Hazardous Materials, Vol.351, 285-292, 2018
Polyolefin-based interpenetrating polymer network absorbent for crude oil entrapment and recovery in aqueous system
In this research, a series of different two polyolefin-based interlaced polymer network material was prepared with a semi-crystalline linear low density polyethylene (LLDPE, thermoplastic) and a crosslinked 1-decene/divinylbenzene (1-D/DVB, elastomer) having high crude oil absorption capacity. The prepared absorbents, LLDPE/D/DVB, were characterized by NMR, TEM, contact angle measurement and TGA analysis. It was observed that the mixing ratio of two interlaced polymer network played a crucial role in determining its crude oil absorption capacity. The swelling capacity of absorbent prepared from a 1:1 mixing of LLDPE and D/DVB (0.2 ml) exhibit high removal efficiency in crude oil absorption over 40 g/g at both 25 degrees C and 0 degrees C. The removal of the absorbed crude oil from the water surface is effective. As the absorbent made of polyolefin materials have pure hydrocarbon content, offer significant advantages such as high absorption capacity, simple recovery, and recyclability.