화학공학소재연구정보센터
Journal of Catalysis, Vol.358, 266-276, 2018
High {001} faceted TiO2 nanoparticles for the valorization of oxygenated compounds present in aqueous biomass-derived feedstocks
{0 0 1} faceted TiO2 catalysts are hydrothermally synthesized by using titanium(IV) isopropoxide and butoxide precursors (ISO and BUT TiO2 samples) together with HF addition. Their activity and stability are evaluated in the catalytic condensation of light oxygenated organic compounds present in an aqueous model mixture simulating a real bio-refinery effluent, under moderate operation conditions. High {0 0 1} faceted TiO2 catalysts show organic products yields superior to those attained with other TiO2 samples (anatase, rutile, and P25). This enhanced catalytic activity relates to their physico-chemical and textural properties, such as high surface area (approximate to 100 m(2)/g), regular morphology (platelets conformed by partially agglomerated TiO2 nanoparticles), and adequate Lewis acidity. XRD and Raman measurements evidence the unique presence of anatase crystalline phase in both ISO and BUT materials, in which the use of HF during synthesis produces the preferential growth of TiO2 crystals mainly exposing the {0 0 1} plane. This effective {0 0 1} facet exposition directly determines catalytic results. Moreover, TiO2 ISO catalyst shows outstanding stability under reaction conditions, maintaining practically unaltered their activity after several re-uses. In particular, Lewis acid sites present in TiO2 faceted materials are more stable in the presence of organic acids under aqueous environments. This opens new possibilities for the application of these materials in the valorization of light oxygenated compounds present in biomass-derived aqueous effluents. (C) 2017 Elsevier Inc. All rights reserved.